




Large-Scale Computing



WILEY SERIES ON PARALLEL  
AND DISTRIBUTED COMPUTING

Editor: Albert Y. Zomaya

A complete list of titles in this series appears at the end of this volume.





Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in 
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or 
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright 
Act, without either the prior written permission of the Publisher, or authorization through 
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at 
www.copyright.com. Requests to the Publisher for permission should be addressed to the 
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,  
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best 
efforts in preparing this book, they make no representations or warranties with respect to the 
accuracy or completeness of the contents of this book and specifically disclaim any implied 
warranties of merchantability or fitness for a particular purpose. No warranty may be created 
or extended by sales representatives or written sales materials. The advice and strategies 
contained herein may not be suitable for your situation. You should consult with a professional 
where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any 
other commercial damages, including but not limited to special, incidental, consequential, or 
other damages.

For general information on our other products and services or for technical support, please 
contact our Customer Care Department within the United States at (800) 762-2974, outside the 
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in 
print may not be available in electronic formats. For more information about Wiley products, 
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Large-scale computing techniques for complex system simulations / [edited by] Werner 
Dubitzky, Krzysztof Kurowski, Bernhard Schott.
   p. cm.—(Wiley series on parallel and distributed computing ; 80)
 Includes bibliographical references and index.
 ISBN 978-0-470-59244-1 (hardback)
 1. Computer simulation. I. Dubitzky, Werner, 1958– II. Kurowski, Krzysztof, 
1977– III. Schott, Bernhard, 1962–
 QA76.9.C65L37 2012
 003'.3–dc23
 2011016571

eISBN 9781118130476
oISBN 9781118130506
ePub 9781118130490
MOBI 9781118130483

Printed in United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com


Contents

FOREWORD	 XI

PREFACE	 XV

CONTRIBUTORS	 XIX

1.	 State-of-the-Art	Technologies	for	Large-Scale	Computing	 1
Florian Feldhaus, Stefan Freitag, and Chaker El Amrani

1.1  Introduction  /  1
1.2  Grid Computing  /  2
1.3  Virtualization  /  6
1.4  Cloud Computing  /  8

1.4.1  Drawbacks of Cloud Computing  /  9
1.4.2  Cloud Interfaces  /  10

1.5  Grid and Cloud: Two Complementary Technologies  /  12
1.6  Modeling and Simulation of Grid and  

Cloud Computing  /  13
1.6.1  GridSim and CloudSim Toolkits  /  14

1.7  Summary and Outlook  /  15
References  /  16

2.	 The	e-Infrastructure	Ecosystem:	Providing	Local		
Support	to	Global	Science	 19
Erwin Laure and Åke Edlund

2.1  The Worldwide e-Infrastructure Landscape  /  19
2.2  BalticGrid: A Regional e-Infrastructure, Leveraging on  

the Global “Mothership” EGEE  /  21

v



vi    CONTENTS

2.2.1  The BalticGrid Infrastructure  /  21
2.2.2  BalticGrid Applications: Providing Local Support to  

Global Science  /  22
2.2.3  The Pilot Applications  /  23
2.2.4  BalticGrid’s Support Model  /  25

2.3  The EGEE Infrastructure  /  25
2.3.1  The EGEE Production Service  /  26
2.3.2  EGEE and BalticGrid: e-Infrastructures in Symbiosis  /  28

2.4  Industry and e-Infrastructures: The Baltic Example  /  29
2.4.1  Industry and Grids  /  29
2.4.2  Industry and Clouds, Clouds and e-Infrastructures  /  30
2.4.3  Clouds: A New Way to Attract SMEs and Start-Ups  /  30

2.5  The Future of European e-Infrastructures: The European  
Grid Initiative (EGI) and the Partnership for Advanced  
Computing in Europe (PRACE) Infrastructures  /  31
2.5.1  Layers of the Ecosystem  /  32

2.6  Summary  /  33
Acknowledgments  /  34
References  /  34

3.	 Accelerated	Many-Core	GPU	Computing	for	Physics		
and	Astrophysics	on	Three	Continents	 35
Rainer Spurzem, Peter Berczik, Ingo Berentzen, Wei Ge, Xiaowei Wang,  
Hsi-Yu Schive, Keigo Nitadori, Tsuyoshi Hamada, and José Fiestas

3.1  Introduction  /  36
3.2  Astrophysical Application for Star Clusters and  

Galactic Nuclei  /  38
3.3  Hardware  /  40
3.4  Software  /  41
3.5  Results of Benchmarks  /  42
3.6  Adaptive Mesh Refinement Hydrosimulations  /  49
3.7  Physical Multiscale Discrete Simulation at IPE  /  49
3.8  Discussion and Conclusions  /  53
Acknowledgments  /  54
References  /  54

4.	 An	Overview	of	the	SimWorld	Agent-Based	Grid		
Experimentation	System	 59
Matthias Scheutz and Jack J. Harris



CONTENTS    vii

4.1  Introduction  /  59
4.2  System Architecture  /  62
4.3  System Implementation  /  67

4.3.1  Key Components  /  68
4.3.2  Novel Features in SWAGES  /  69

4.4  A SWAGES Case Study  /  71
4.4.1  Research Questions and Simulation Model  /  71
4.4.2  The Simulation Environment  /  72
4.4.3  Simulation Runs in SWAGES  /  72
4.4.4  Data Management and Visualization  /  73

4.5  Discussion  /  74
4.5.1  Automatic Parallelization of Agent-Based Models  /  75
4.5.2  Integrated Data Management  /  76
4.5.3  Automatic Error Detection and Recovery  /  76
4.5.4  SWAGES Compared to Other Frameworks  /  76

4.6  Conclusions  /  78
References  /  78

5.	 Repast	HPC:	A	Platform	for	Large-Scale	Agent-Based	Modeling	 81
Nicholson Collier and Michael North

5.1  Introduction  /  81
5.2  Agent Simulation  /  82
5.3  Motivation and Related Work  /  82
5.4  From Repast S to Repast HPC  /  90

5.4.1  Agents as Objects  /  91
5.4.2  Scheduling  /  91
5.4.3  Modeling  /  91

5.5  Parallelism  /  92
5.6  Implementation  /  94

5.6.1  Context  /  95
5.6.2  RepastProcess  /  95
5.6.3  Scheduler  /  96
5.6.4  Distributed Network  /  97
5.6.5  Distributed Grid  /  98
5.6.6  Data Collection and Logging  /  99
5.6.7  Random Number Generation and Properties  /  100

5.7  Example Application: Rumor Spreading  /  101
5.7.1  Performance Results  /  103



viii    CONTENTS

5.8  Summary and Future Work  /  107
References  /  107

6.	 Building	and	Running	Collaborative	Distributed		
Multiscale	Applications	 111
Katarzyna Rycerz and Marian Bubak

6.1  Introduction  /  111
6.2  Requirements of Multiscale Simulations  /  112

6.2.1  Interactions between Single-Scale Models  /  113
6.2.2  Interoperability, Composability, and Reuse of  

Simulation Models  /  115
6.3  Available Technologies  /  116

6.3.1  Tools for Multiscale Simulation Development  /  116
6.3.2  Support for Composability  /  117
6.3.3  Support for Simulation Sharing  /  118

6.4  An Environment Supporting the HLA  
Component Model  /  119
6.4.1  Architecture of the CompoHLA Environment  /  119
6.4.2  Interactions within the CompoHLA Environment  /  120
6.4.3  HLA Components  /  122
6.4.4  CompoHLA Component Users  /  124

6.5  Case Study with the MUSE Application  /  124
6.6  Summary and Future Work  /  127
Acknowledgments  /  128
References  /  129

7.	 Large-Scale	Data-Intensive	Computing	 131
Mark Parsons

7.1  Digital Data: Challenge and Opportunity  /  131
7.1.1  The Challenge  /  131
7.1.2  The Opportunity  /  132

7.2  Data-Intensive Computers  /  132
7.3  Advanced Software Tools and Techniques  /  134

7.3.1  Data Mining and Data Integration  /  134
7.3.2  Making Data Mining Easier  /  135
7.3.3  The ADMIRE Workbench  /  137

7.4  Conclusion  /  139
Acknowledgments  /  139
References  /  139



CONTENTS    ix

8.	 A	Topology-Aware	Evolutionary	Algorithm	for		
Reverse-Engineering	Gene	Regulatory	Networks	 141
Martin Swain, Camille Coti, Johannes Mandel, and Werner Dubitzky 

8.1  Introduction  /  141
8.2  Methodology  /  143

8.2.1  Modeling GRNs  /  143
8.2.2  QCG-OMPI  /  148
8.2.3  A Topology-Aware Evolutionary Algorithm  /  152

8.3  Results and Discussion  /  155
8.3.1  Scaling and Speedup of the Topology-Aware  

Evolutionary Algorithm  /  155
8.3.2  Reverse-Engineering Results  /  158

8.4  Conclusions  /  160
Acknowledgments  /  161
References  /  161

9.	 QosCosGrid	e-Science	Infrastructure	for	Large-Scale		
Complex	System	Simulations	 163
Krzysztof Kurowski, Bartosz Bosak, Piotr Grabowski, Mariusz  
Mamonski, Tomasz Piontek, George Kampis, László Gulyás, Camille Coti,  
Thomas Herault, and Franck Cappello

9.1  Introduction  /  163

9.2  Distributed and Parallel Simulations  /  165
9.3  Programming and Execution Environments  /  168

9.3.1  QCG-OMPI  /  169
9.3.2  QCG-ProActive  /  171

9.4  QCG Middleware  /  174
9.4.1  QCG-Computing Service  /  175
9.4.2  QCG-Notification and Data Movement Services  /  176
9.4.3  QCG-Broker Service  /  177

9.5  Additional QCG Tools  /  179
9.5.1  Eclipse Parallel Tools Platform (PTP) for QCG  /  179

9.6  QosCosGrid Science Gateways  /  180
9.7  Discussion and Related Work  /  182
References  /  184

GLOSSARY	 187

INDEX	 195





Foreword

The human desire to understand things is insatiable and perpetually drives the 
advance of society, industry, and our quality of living. Scientific inquiry and 
research are at the core of this desire to understand, and, over the years, sci-
entists have developed a number of formal means of doing that research. The 
third means of scientific research, developed in the past 100 years after theory 
and experimentation, is modeling and simulation. The sharpest tool invented 
thus far for modeling and simulation has been the computer. It is fascinating 
to observe that, within the short span of a few decades, humans have devel-
oped dramatically larger and larger scale computing systems, increasingly 
based on massive replication of commodity elements to model and simulate 
complex phenomena in increasing details, thus delivering greater insights. At 
this juncture in computing, it looks as if we have managed to turn everything 
physical into its virtual equivalent, letting a virtual world precede the physical 
one it reflects so that we can predict what is going to happen before it happens. 
Better yet, we want to use modeling and simulation to tell us how to change 
what is going to happen. The thought is almost scary as we are not supposed 
to do God’s work.

We all know the early studies of ballistic trajectories and code breaking, 
which stimulated the development of the first computers. From those begin-
nings, all kinds of physical objects and natural phenomena have been captured 
and reflected in computer models, ranging from particles in a “simple” atom 
to the creation of the universe, with modeling the earth’s climate in between. 

xi



xii    Foreword

Computer-based modeling systems are not just limited to natural systems, but 
increasingly, man-made objects are being modeled, as well. One could say that, 
without computers, there would not have been the modern information, com-
munication, and entertainment industries because the heart of these indus-
tries’ products, the electronic chips, must be extensively simulated and tested 
before they are manufactured.

Even much larger physical products, like cars and airplanes, are also modeled 
by computers before they go into manufacturing. An airbus virtually assembles 
all of its planes’ graphically rendered parts every night to make sure they fit 
together and work, just like a software development project has all its pieces 
of code compiled and regression tested every night so that the developers can 
get reports on what they did wrong the day before to fix their problems. Lately, 
modelers have advanced to simulating even the human body itself, as well as 
the organizations we create: How do drugs interact with the proteins in our 
bodies? How can a business operate more efficiently to generate more revenue 
and profits by optimizing its business processes? The hottest area of enterprise 
computing applications nowadays is business analytics.

Tough problems require sharp tools, and imaginative models require inno-
vative computing systems. In computing, the rallying cry from the beginning 
has been “larger is better”: larger computing power, larger memory, larger 
storage, larger everything. Our desire for more computing capacity has been 
insatiable. To solve the problems that computer simulations address, computer 
scientists must be both dreamers and greedy for more computing power at the 
same time. And it is all for the better: It is valuable to be able to simulate in 
detail a car with a pregnant woman sitting in it and to model how the side and 
front air bags will function when surrounded by all the car parts and involved 
in all kinds of abnormal turns. More accurate results require using more com-
puting power, more data storage space, and more interconnect bandwidth to 
link them all together. In computing, greed is good—if you can afford it.

That is where this book will start: How can we construct infinitely powerful 
computing systems with just the right applications to support modeling and 
simulating problems at a very low cost so they can be accessible to everybody? 
There is no simple answer, but there are a million attempts. Of course, not all 
of them lead to real progress, and not all of them can be described between 
the two covers of a book. This book carefully selected eight projects and 
enlisted their thinkers to show and tell what they did and what they learned 
from those experiences. The reality of computing is that it is still just as much 
an art as it is science: it is the cleverness of how to put together the silicon and 
the software programs to come up with a system that has the lowest cost while 
also being the most powerful and easiest to use. These thinkers, like genera-
tions of inventors before them, are smart, creative people on a mission.

There have certainly been many innovations in computer simulation 
systems, but three in particular stand out: commodity replication, virtualiza-
tion, and cloud computing. Each of these will also be explored in this book, 
although none of these trends have been unique to simulation.



Foreword    xiii

Before commodity replication, the computing industry had a good run of 
complex proprietary systems, such as the vector supercomputers. But when it 
evolved to 30 layers in a printed circuit board and a cost that could break a 
regional bank, it had gone too far. After that, the power was in the replication 
of commodity components like the x86 chips used in PCs, employing a million 
of them while driving a big volume discount, then voilà, you get a large-scale 
system at a low(er) cost! That is what drove computing clusters and grids.

The complexity animal was then tamed via software through virtualization, 
which abstracts away the low-level details of the system components to present 
a general systems environment supporting a wide array of parallel program-
ming environments and specialized simulations. Virtualization allows innova-
tion in computer system components without changing applications to fit the 
systems. Finally, cloud computing may allow users not to have to actually own 
large simulation computers anymore but rather to only use computing 
resources as needed, sharing such a system with other users. Or even better, 
cloud resources can be rented from a service provider and users only pay for 
usage. That is an innovation all right, but it feels like we are back to the main-
frame service bureau days. In this book, you will learn about many variations 
of innovations around these three themes as applied to simulation systems.

So, welcome to a fascinating journey into the virtual world of simulation 
and computing. Be prepared to be perplexed before possibly being enlight-
ened. After all, simulation is supposed to be the state of the art when it comes 
to complex and large-scale computing. As they say, the rewards make the 
journey worthwhile.

Songnian Zhou
Toronto, Canada

March 2011





Preface

Complex systems are defined as systems with many interdependent parts that 
give rise to nonlinear and emergent properties determining their high-level 
functioning and behavior. Due to the interdependence of their constituent 
elements and other characteristics of complex systems, it is difficult to predict 
system behavior based on the “sum of their parts” alone. Examples of complex 
systems include human economies and societies, nervous systems, molecular 
interaction networks, cells and other living things, such as bees and their hives, 
and ecosystems, as well as modern energy and telecommunication infrastruc-
tures. Arguably, one of the most striking properties of complex systems is that 
conventional experimental and engineering approaches are inadequate to 
capture and predict the behavior of such systems. A relatively recent and more 
holistic approach employs computational techniques to model and simulate 
complex natural phenomena and complex man-made artifacts. Complex 
system simulations typically require considerable computing and storage 
resources (processing units and primary and secondary memory) as well as 
high-speed communication links. Supercomputers are the technology of choice 
to satisfy these requirements. Because supercomputers are expensive to 
acquire and maintain, there has been a trend to exploit distributed computing 
and other large-scale computing technologies to facilitate complex system 
simulations. Grid computing, service-oriented architectures, programmable 
logic arrays, and graphic processors are examples of such technologies.

xv



xvi    Preface

The purpose of this volume is to present a representative overview of con-
temporary large-scale computing technologies in the context of complex 
system simulation applications. The book is intended to serve simultaneously 
as design blueprint, user guide, research agenda, and communication platform. 
As a design blueprint, the book is intended for researchers and technology and 
application developers, managers, and other professionals who are tasked with 
the development or deployment of large-scale computer technology to facili-
tate complex system applications. As a user guide, the volume addresses the 
requirements of modelers and scientists to gain an overview and a basic under-
standing of key concepts, methodologies, technologies, and tools. For this audi-
ence, we seek to explain the key concepts and assumptions of the various 
large-scale computer techniques and technologies, their conceptual and com-
putational merits and limitations. We aim at providing the users with a clear 
understanding and practical know-how of the relevant technologies in the 
context of complex system modeling and simulation and the large-scale com-
puting technologies employed to meet the requirements of such applications. 
As research agenda, the book is intended for computer and complex systems 
students, teachers, and researchers who seek to understand the state of the art 
of the large-scale computing technologies involved as well as their limitations 
and emerging and future developments. As a communication platform, the 
book is intended to bridge the cultural, conceptual, and technological gap 
among the key disciplines of complex system modeling and simulation and 
large-scale computing. To support this goal, we have asked the contributors to 
adopt an approach that appeals to audiences from different backgrounds.

Clearly, we cannot expect to do full justice to all of these goals in a single 
book. However, we do believe that this book has the potential to go a long 
way in fostering the understanding, development, and deployment of large-
scale computer technology and its application to the modeling and simulation 
of complex systems. Thus, we hope this volume will contribute to increased 
communication and collaboration across various modeling, simulation, and 
computer science disciplines and will help to improve the complex natural and 
engineering systems.

This volume comprises nine chapters, which introduce the key concepts and 
challenges and the lessons learned from developing and deploying large-scale 
computing technologies in the context of complex system applications. Next, 
we briefly summarize the contents of the nine chapters.

Chapter 1 is concerned with an overview of some large-scale computing 
technologies. It discusses how in the last three decades the demand for com-
puter-aided simulation of processes and systems has increased. In the same 
time period, simulation models have become increasingly complex in order to 
capture the details of the systems and processes being modeled. Both trends 
have instigated the development of new concepts aimed at a more efficient 
sharing of computational resources. Typically, grid and cloud computing tech-
niques are employed to meet the computing and storage demands of complex 
applications in research, development, and other areas. This chapter provides 



Preface    xvii

an overview of grid and cloud computing, which are key elements of many 
modern large-scale computing environments.

Chapter 2 adopts the view of an e-infrastructure ecosystem. It focuses on 
scientific collaborations and how these are increasingly relying on the capabil-
ity of combining computational and data resources supplied by several resource 
providers into seamless e-infrastructures. This chapter presents the rationale 
for building an e-infrastructure ecosystem that comprises national, regional, 
and international e-infrastructures. It discusses operational and usage models 
and highlights how e-infrastructures can be used in building complex 
applications.

Chapter 3 presents multiscale physical and astrophysical simulations on 
new many-core accelerator hardware. The chosen algorithms are deployed on 
parallel clusters using a large number of graphical processing units (GPUs) 
on the petaflop scale. The applications are particle-based astrophysical many-
body simulations with self-gravity, as well as particle and mesh-based simula-
tions on fluid flows, from astrophysics and physics. Strong and soft scaling are 
demonstrated using some of the fastest GPU clusters in China and hardware 
resources of cooperating teams in Germany and the United States.

Chapter 4 presents an overview of the SimWorld Agent-Based Grid 
Experimentation System (SWAGES). SWAGES has been used extensively for 
various kinds of agent-based modeling and is designed to scale to very large 
and complex grid environments while maintaining a very simple user interface 
for integrating models with the system. This chapter focuses on SWAGES’ 
unique features for parallel simulation experimentation (such as novel spatial 
scheduling algorithms) and on its methodologies for utilizing large-scale com-
putational resources (such as the distributed server architecture designed to 
offset the ever-growing computational demands of administering large simula-
tion experiments).

Chapter 5 revolves around agent-based modeling and simulation (ABMS) 
technologies. In the last decade, ABMS has been successfully applied to a 
variety of domains, demonstrating the potential of this approach to advance 
science, engineering, and other domains. However, realizing the full potential 
of ABMS to generate breakthrough research results requires far greater com-
puting capability than is available through current ABMS tools. The Repast 
for High Performance Computing (Repast HPC) project addresses this need 
by developing a next-generation ABMS system explicitly focusing on larger-
scale distributed computing platforms. This chapter’s contribution is its detailed 
presentation of the implementation of Repast HPC, a complete ABMS plat-
form developed explicitly for large-scale distributed computing systems.

Chapter 6 presents an environment for the development and execution of 
multiscale simulations composed from high-level architecture (HLA) compo-
nents. Advanced HLA mechanisms are particularly useful for multiscale simu-
lations as they provide, among others, time management functions that enable 
the construction of integrated simulations from modules with different indi-
vidual timescales. Using the proposed solution simplifies the use of HLA 



xviii    Preface

services and allows components to be steered by users; this is not possible in 
raw HLA. This solution separates the roles of simulation module developers 
from those of users and enables collaborative work. The environment is acces-
sible via a scripting API, which enables the steering of distributed components 
using straightforward source code.

Chapter 7 is concerned with the data dimensions of large-scale computing. 
Data-intensive computing is the study of the tools and techniques required to 
manage and explore digital data. This chapter briefly discusses the many issues 
arising from the huge increase in stored digital data that we are now con-
fronted with globally. In order to make sense of this data and to transform it 
into useful information that can inform our knowledge of the world around 
us, many new techniques in data handling, data exploration, and information 
creation are needed. The Advanced Data Mining and Integration Research 
for Europe (ADMIRE) project, which this chapter discusses in some detail, 
is studying how some of these challenges can be addressed through the cre-
ation of advanced, automated data mining techniques that can be applied to 
large-scale distributed data sets.

Chapter 8 describes a topology-aware evolutionary algorithm that is able 
to automatically adapt itself to different configurations of distributed comput-
ing resources. An important component of the algorithm is the use of 
QosCosGrid-OpenMPI, which enables the algorithm to run across computing 
resources hundreds of kilometers distant from one another. The authors use 
the evolutionary algorithm to compare models of a biological gene regulatory 
network which have been reverse engineered using three different systems of 
mathematical equations.

Chapter 9 presents a number of technologies that have been successfully 
integrated into a supercomputing-like e-science infrastructure called 
QosCosGrid (QCG). The solutions provide services for simulations such as 
complex systems, multiphysics, hybrid models, and parallel applications. The 
key aim in providing these solutions was to support the dynamic and guaran-
teed use of distributed computational clusters and supercomputers managed 
efficiently by a hierarchical scheduling structure involving a metascheduler 
layer and underlying local queuing or batch systems.

Werner Dubitzky
Krzysztof Kurowski

Bernhard Schott

Coleraine, Frankfurt, Poznan
May 2011



Contributors

Peter Berczik,  National Astronomical  Observatories  of  China,  Chinese 
Academy of Sciences, China, and Astronomisches Rechen-Institut, Zentrum 
für Astronomie, University of Heidelberg, Germany; Email: berczik@bao.
ac.cn

ingo Berentzen,  Zentrum  für  Astronomie,  University  of  Heidelberg, 
Heidelberg, Germany; Email: iberent@ari.uni-heidelberg.de

Bartosz Bosak,  Poznan Supercomputing and Networking Center, Poznan, 
Poland; Email: bbosak@man.poznan.pl

Marian BuBak,  AGH  University  of  Science  and  Technology,  Krakow, 
Poland,  and  Institute  for  Informatics,  University  of  Amsterdam,  The 
Netherlands; Email: bubak@agh.edu.pl

Franck caPPello,  National  Institute  for Research  in Computer Science 
and Control (INRIA), Rennes, France; Email: franck.cappello@inria.fr

nicholson collier,  Argonne  National  Laboratory, Argonne  IL;  Email: 
ncollier@anl.gov

caMille coti,  LIPN,  CNRS-UMR7030,  Université  Paris  13,  F-93430 
Villetaneuse, France; Email: camille.coti@lipn.univ-paris13.fr

Werner DuBitzky,  School  of  Biomedical  Sciences,  University  of  Ulster, 
Coleraine BT52 1SA, UK; Email: w.dubitzky@ulster.ac.uk

Åke eDlunD, KTH  Royal  Institute  of  Technology,  Stockholm,  Sweden; 
Email: edlund@nada.kth.se

xix

mailto:berczik@bao.ac.cn
mailto:berczik@bao.ac.cn
mailto:iberent@ari.uni-heidelberg.de
mailto:bbosak@man.poznan.pl
mailto:bubak@agh.edu.pl
mailto:franck.cappello@inria.fr
mailto:ncollier@anl.gov
mailto:camille.coti@lipn.univ-paris13.fr
mailto:w.dubitzky@ulster.ac.uk
mailto:edlund@nada.kth.se


xx    Contributors

chaker el aMrani,  Université  Abdelmalek  Essaâdi,  Tanger,  Morocco; 
Email: ch.elamrani@fstt.ac.ma

Florian FelDhaus,  Dortmund  University  of  Technology,  Dortmund, 
Germany; Email: florian.feldhaus@udo.edu

José Fiestas,  Astronomisches  Rechen-Institut,  Zentrum  für  Astronomie, 
University of Heidelberg, Germany; Email: fiestas@ari.uni-heidelberg.de

steFan Freitag,  Dortmund University of Technology, Dortmund, Germany; 
Email: stefan.freitag@udo.edu

Wei ge,  Institute  of  Process  Engineering,  Chinese Academy  of  Sciences, 
Beijing, China; Email: wge@home.ipe.ac.cn

Piotr graBoWski,  Poznan  Supercomputing  and  Networking  Center, 
Poznan, Poland; Email: piotrg@man.poznan.pl

lászló gulyás,  Aitia International Inc. and Collegium Budapest (Institute 
for Advanced Study), Budapest, Hungary; Email: gulya@aitia.ai

tsuyoshi haMaDa,  Nagasaki  Advanced  Computing  Center,  Nagasaki 
University, Nagasaki, Japan; Email: hamada@nacc.nagasaki-u.ac.jp

Jack J. harris,  Human Robot Interaction Laboratory, Indiana University, 
Bloomington, IN; Email: jackharr@indiana.edu

thoMas herault,  National  Institute  for  Research  in  Computer  Science 
and Control (INRIA), Rennes, France; Email: thomas.herault@lri.fr

george kaMPis,  Collegium  Budapest  (Institute  for  Advanced  Study), 
Budapest, Hungary; Email: kampis.george@gmail.com

krzysztoF kuroWski,  Poznan  Supercomputing  and  Networking  Center, 
Poznan, Poland; Email: krzysztof.kurowski@man.poznan.pl

erWin laure,  KTH  Royal  Institute  of  Technology,  Stockholm,  Sweden; 
Email: erwinl@pdc.kth.se

Mariusz MaMonski,  Poznan  Supercomputing  and  Networking  Center, 
Poznan, Poland; Email: mmamonski@man.poznan.pl

Johannes ManDel,  Roche Diagnostics GmbH, Penzberg, Germany; Email: 
johannes.mandel@roche.com

keigo nitaDori,  RIKEN AICS Institute, Kobe, Japan; Email: keigo@riken
.jp

Michael north, Argonne National Laboratory, Argonne IL; Email: north@
anl.gov

Mark Parsons,  EPCC,  The  University  of  Edinburgh,  Edinburgh,  UK; 
Email: m.parsons@epcc.ed.ac.uk

toMasz Piontek,  Poznan Supercomputing and Networking Center, Poznan, 
Poland; Email: piontek@man.poznan.pl

katarzyna rycerz,  AGH University of Science and Technology, Krakow, 
Poland, and ACC Cyfronet AGH, Krakow, Poland; Email: kzajac@agh.edu.
pl

Matthias scheutz,  Department  of  Computer  Science,  Tufts  University, 
Medford, MA; Email: mscheutz@cs.tufts.edu

hsi-yu schive,  Department of Physics, National Taiwan University, Taibei, 
Taiwan; Email: b88202011@ntu.edu.tw

mailto:ch.elamrani@fstt.ac.ma
mailto:florian.feldhaus@udo.edu
mailto:fiestas@ari.uni-heidelberg.de
mailto:stefan.freitag@udo.edu
mailto:wge@home.ipe.ac.cn
mailto:piotrg@man.poznan.pl
mailto:gulya@aitia.ai
mailto:hamada@nacc.nagasaki-u.ac.jp
mailto:jackharr@indiana.edu
mailto:thomas.herault@lri.fr
mailto:kampis.george@gmail.com
mailto:krzysztof.kurowski@man.poznan.pl
mailto:erwinl@pdc.kth.se
mailto:mmamonski@man.poznan.pl
mailto:johannes.mandel@roche.com
mailto:keigo@riken.jp
mailto:keigo@riken.jp
mailto:north@anl.gov
mailto:north@anl.gov
mailto:m.parsons@epcc.ed.ac.uk
mailto:piontek@man.poznan.pl
mailto:kzajac@agh.edu.pl
mailto:kzajac@agh.edu.pl
mailto:mscheutz@cs.tufts.edu
mailto:b88202011@ntu.edu.tw


Contributors    xxi

rainer sPurzeM,  National Astronomical Observatories of China, Chinese 
Academy of Sciences, China; Astronomisches Rechen-Institut, Zentrum für 
Astronomie,  University  of  Heidelberg,  Germany;  and  Kavli  Institute  for 
Astronomy and Astrophysics, Peking University, China; Email: spurzem@
bao.ac.cn

Martin sWain,  Institute of Biological, Environmental and Rural Sciences, 
Aberystwyth  University,  Penglais,  Aberystwyth,  Ceredigion,  UK;  Email: 
mts11@aber.ac.uk

XiaoWei Wang,  Institute  of  Process  Engineering,  Chinese  Academy  of 
Sciences, Beijing, China; Email: xwwang@home.ipe.ac.cn

mailto:spurzem@bao.ac.cn
mailto:spurzem@bao.ac.cn
mailto:mts11@aber.ac.uk
mailto:xwwang@home.ipe.ac.cn




Chapter 1
State-of-the-Art 

Technologies for  
Large-Scale Computing

Florian Feldhaus and Stefan Freitag
Dortmund University of Technology, Dortmund, Germany

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski, 
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

1.1  INTRODUCTION

Within the past few years, the number and complexity of computer-aided simula-
tions in science and engineering have seen a considerable increase. This increase 
is not limited to academia as companies and businesses are adding modeling and 
simulation to their repertoire of tools and techniques. Computer-based simula-
tions often require considerable computing and storage resources. Initial 
approaches to address the growing demand for computing power were realized 
with supercomputers in 60 seconds. Around 1964, the CDC6600 (a mainframe 
computer from Control Data Corporation) became available and offered a peak 
performance of approximately 3 × 106 floating point operations per second (flops) 
(Thornton, 1965). In 2008, the IBM Roadrunner1 system, which offers a peak per-
formance of more than 1015 flops, was commissioned into service. This system was 
leading the TOP500 list of supercomputers2 until November 2009.

1

2 www.top500.org.

1 www.lanl.gov/roadrunner.

Chaker El Amrani
Université Abdelmalek Essaâdi, Tanger, Morocco

http://www.top500.org
http://www.lanl.gov/roadrunner


2    State-of-the-art technologieS for large-Scale computing 

Supercomputers are still utilized to execute complex simulations in a rea-
sonable amount of time, but can no longer satisfy the fast-growing demand for 
computational resources in many areas. One reason why the number of avail-
able supercomputers does not scale proportional to the demand is the high 
cost of acquisition (e.g., $133 million for Roadrunner) and maintenance.

As conventional computing hardware is becoming more powerful (process-
ing power and storage capacity) and affordable, researchers and institutions 
that cannot afford supercomputers are increasingly harnessing computer clus-
ters to address their computing needs. Even when a supercomputer is available, 
the operation of a local cluster is still attractive, as many workloads may be 
redirected to the local cluster and only jobs with special requirements that 
outstrip the local resources are scheduled to be executed on the supercomputer.

In addition to current demand, the acquisition of a cluster computer for 
processing or storage needs to factor in potential increases in future demands 
over the computer’s lifetime. As a result, a cluster typically operates below its 
maximum capacity for most of the time. E-shops (e.g., Amazon) are normally 
based on a computing infrastructure that is designed to cope with peak work-
loads that are rarely reached (e.g., at Christmas time).

Resource providers in academia and commerce have started to offer access 
to their underutilized resources in an attempt to make better use of spare 
capacity. To enable this provision of free capacity to third parties, both kinds 
of provider require technologies to allow remote users restricted access to 
their local resources. Commonly employed technologies used to address this 
task are grid computing and cloud computing. The concept of grid computing 
originated from academic research in the 1990s (Foster et al., 2001). In a grid, 
multiple resources from different administrative domains are pooled in a 
shared infrastructure or computing environment. Cloud computing emerged 
from commercial providers and is focused on providing easy access to resources 
owned by a single provider (Vaquero et al., 2009).

Section 1.2 provides an overview of grid computing and the architecture of 
grid middleware currently in use. After discussing the advantages and draw-
backs of grid computing, the concept of virtualization is briefly introduced. 
Virtualization is a key concept behind cloud computing, which is described in 
detail in Section 1.4. Section 1.5 discusses the future and emerging synthesis 
of grid and cloud computing before Section 1.7 summarizes this chapter and 
provides some concluding remarks.

1.2  GRID COMPUTING

Foster (2002) proposes three characteristics of a grid:

1. Delivery of nontrivial qualities of service
2. Usage of standard, open, general-purpose protocols and interfaces
3. Coordination of resources that are not subject to centralized control



grid computing    3

Endeavors to implement solutions addressing the concept of grid comput-
ing ended up in the development of grid middleware. This development was 
and still is driven by communities with very high demands for computing 
power and storage capacity. In the following, the main grid middleware con-
cepts are introduced and their implementation is illustrated on the basis of the 
gLite3 middleware, which is used by many high-energy physics research insti-
tutes (e.g., CERN). Other popular grid middleware include Advanced Resource 
Connector (ARC4), Globus Toolkit,5 National Research Grid Initiative 
(NAREGI6), and Platform LSF MultiCluster.7

Virtual Organizations. A central concept of many grid infrastructures is a 
virtual organization. The notion of a virtual organization was first mentioned 
by Mowshowitz (1997) and was elaborated by Foster et al. (2001) as “a set of 
the individuals and/or institutions defined by resource sharing rules.”

Virtual organization is used to overcome the temporal and spatial limits of 
conventional organizations. The resources shared by a virtual organization are 
allowed to change dynamically: Each participating resource/institution is free 
to enter or leave the virtual organization at any point in time. One or more 
resource providers can build a grid infrastructure by using grid middleware to 
offer computing and storage resources to multiple virtual organizations. 
Resources at the same location (e.g., at an institute or computing center) are 
forming a (local) grid site. Each grid site offers its resources through grid 
middleware services to the grid. For the management and monitoring of the 
grid sites as well as the virtual organizations, central services are required. The 
main types of service of a grid middleware may be categorized into (Fig. 1.1) 
(Foster, 2005; Burke et al., 2009) the following:

• Execution management
• Data management
• Information services
• Security

Execution Management. The execution management services deal with 
monitoring and controlling compute tasks. Users submit their compute tasks 
together with a description of the task requirements to a central workload 
management system (WMS). The WMS schedules the tasks according to their 
requirements to free resources discovered by the information system. As there 
may be thousands of concurrent tasks to be scheduled by the WMS, sophisti-
cated scheduling mechanisms are needed. The simulation and analysis of the 

7 www.platform.com.

6 www.naregi.org/link/index_e.html.

5 www.globus.org/toolkit.

4 www.nordugrid.org/middleware.

3 http://glite.cern.ch/.

http://www.platform.com
http://www.naregi.org/link/index_e.html
http://www.globus.org/toolkit
http://www.nordugrid.org/middleware
http://glite.cern.ch/


http://www.dcache.org
http://castor.web.cern.ch/


grid computing    5

various protocols, for example, dcap, xrootd,13 gridFTP, and SRM (Badino 
et al., 2009). The LCG storage element defines the minimum set of protocols 
that have to be supported to access the storage services.

For gLite, the central LCG File Catalog enables virtual organizations to 
create a uniform name space for data and to hide the physical data location. 
This is achieved by using logical file names that are linked to one or more 
physical file names (consisting of the full qualified name of the storage element 
and the absolute data path for the file on this specific storage element). 
Replicas of the data can be created by copying the physical files to multiple 
storage elements and by registering them under one unique logical file name 
in the LCG File Catalog. Thus, the risk of data loss can be reduced.

Information System. The information system discovers and monitors 
resources in the grid. Often the information system is organized hierarchically. 
The information about local resources is gathered by a service at each grid 
site and then sent to a central service. The central service keeps track of the 
status of all grid services and offers an interface to perform queries. The WMS 
can query the information to match resources to compute tasks.

For gLite, a system based on the Lightweight Directory Access Protocol, is 
used. The Berkeley Database Information Index (BDII) service runs at every 
site (siteBDII) and queries all local gLite services in a given time interval. In 
the same way, the siteBDII is queried by a TopLevelBDII, which stores the 
information of multiple grid resources. The list of available resources is kept 
in the information supermarket and is updated periodically by the TopBDII.

To account for the use of resources, a grid middleware may offer accounting 
services. Those register the amount of computation or storage used by indi-
vidual or groups of users or virtual organizations. This allows billing mecha-
nisms to be implemented and also enables the execution management system 
to schedule resources according to use history or quota.

The gLite Monitoring System Collector Server service gathers accounting 
data on the local resources and publishes these at a central service.

Security. To restrict the access of resources to certain groups of users or 
virtual organizations, authentication and authorization rules need to be 
enforced. To facilitate this, each virtual organization issues X.509 certificates 
to its users (user certificate) and resources (host certificate). Using the certifi-
cates, users and resources can be authenticated.

To allow services to operate on behalf of a user, it is possible to create proxy 
certificates. Those are created by the user and are signed with his user certifi-
cate. The proxy certificate usually only has a short lifetime (e.g., 24 hours) for 
security reasons. A service can the use the proxy certificate to authenticate 
against some other service on behalf of the user.

Authorization is granted according to membership in a virtual organization, 
a virtual organization group, or to single users. Access rights are managed 
centrally by the virtual organization for its users and resources.

13 http://xrootd.slac.stanford.edu/.

http://xrootd.slac.stanford.edu/


6    State-of-the-art technologieS for large-Scale computing 

To manage authorization information, gLite offers the Virtual Organization 
Management Service, which stores information on roles and privileges of users 
within a virtual organization. With the information from the Virtual 
Organization Management Service, a grid service can determine the access 
rights of individual users.

1.2.1  Drawbacks in Grid Computing

A grid infrastructure simplifies the handling of distributed, heterogeneous 
resources as well as users and virtual organizations. But despite some effort in 
this direction, the use of inhomogeneous software stacks (e.g., operating system, 
compiler, libraries) on different resources has been a weakness of grid systems.

Virtualization technology (see Section 1.4) offers solutions for this problem 
through an abstraction layer above the physical resources. This allows users, 
for example, to submit customized virtual machines containing their individual 
software stack. As grid middleware is not designed with virtualization in mind, 
the adaptation and adoption of virtualization technology into grid technology 
is progressing slowly. In contrast to grid computing, cloud computing (Section 
1.5) was developed based on virtualization technology. Approaches to combine 
cloud and grid computing are presented in Section 1.6.

1.3  VIRTUALIZATION

As described in Section 1.2, grid computing is concerned mainly with secure 
sharing of resources in dynamic computing environments. Within the past few 
years, virtualization emerged and soon became a key technology, giving a new 
meaning to the concept of resource sharing.

This section describes two different types of technology (resource and plat-
form virtualization) and provides an overview of their respective benefits.

Network Virtualization. At the level of the network layer, virtualization is 
categorized as internal and external virtualizations. External virtualization 
joins network partitions to a single virtual unit. Examples for this type of 
virtualization are virtual private networks and virtual local area networks 
(IEEE Computer Society, 2006). Internal virtualization offers network-like 
functionality to software containers on a resource. This type of virtualization 
is often used in combination with virtual machines.

Storage Virtualization. In mass storage systems, the capacities of physical 
storage devices are often pooled into a single virtual storage device, which is 
accessible by a consumer via the virtualization layer. Figure 1.2 depicts the 
layered structure of a simple storage model.

For storage systems, virtualization is a means by which multiple physical 
storage devices are viewed as a single logical unit. Virtualization can be accom-
plished in two ways at server level, fabric level, storage subsystem level, and 
file system level: in-band and out-of-band virtualization (Tate, 2003). In this 







cloud computing    9

SaaS. This means that software is made available on demand to the end 
user by a distributed or decentralized cloud computing environment instead 
of a local computer. Depending on the available infrastructure and technology, 
one of two methods is applied to provide the software. The conventional 
method uses a terminal server and one or more clients. The software is installed 
at the server site. For access, users connect via the client to the server. The 
contemporary method to provide a SaaS is to deliver the service as part of a 
Web application; hence, access is normally through a Web browser.

Keeping the software at a central repository reduces the total overhead for 
maintenance (e.g., installation and updating); instead of several software 
installations, only one is maintained. The use of SaaS requires a reliable and 
fast link to the cloud provider. In some cases, a local installation is still prefer-
able to improve performance.

One of the established SaaS providers is Google. Google Docs,14 for 
example, offers an online word processing and spreadsheet software.

PaaS. PaaS environments (e.g., Google App Engine15) are used for the 
development and deployment of applications while avoiding the need to buy 
and manage the physical infrastructure. Compared to SaaS, PaaS provides 
facilities like database integration, application versioning, persistence, scal-
ability, and security. Together, these services support the complete life cycle of 
developing and delivering Web applications and services available entirely 
through the Internet.

IaaS. IaaS defines the highest service level in privacy and reliability that 
resource providers currently offer their customers. In this case, the term infra-
structure includes virtual and physical resources.

With respect to the interfaces offered by a cloud, a distinction is made 
between compute clouds and storage clouds. Compute cloud providers employ, 
for example, virtualization and by doing so offer easy access to remote com-
puting power. In contrast to this, storage clouds focus on the persistent storage 
of data. Most compute clouds also offer interfaces to a storage facility which 
can be used to upload virtual appliances.

To satisfy the increasing demand for dynamic resource provisioning, the 
number of cloud providers is increasing steadily. Established providers are 
Amazon EC2,16 FlexiScale,17 and ElasticHosts.18

1.4.1  Drawbacks of Cloud Computing

At the peak of its hype, cloud computing was the proclaimed successor of grid 
computing. Unfortunately, cloud computing suffers from the same problems 

18 www.elastichosts.com.

17 www.flexiant.com/products/flexiscale/.

16 http://aws.amazon.com/ec2/.

15 http://code.google.com/intl/de/appengine/.

14 http://docs.google.com.

http://www.elastichosts.com
http://www.flexiant.com/products/flexiscale/
http://aws.amazon.com/ec2/
http://code.google.com/intl/de/appengine/
http://docs.google.com


10    State-of-the-art technologieS for large-Scale computing 

as grid computing—the difference is that in the cloud paradigm, the problems 
are located closer to the hardware layer.

The resource broker in a grid matches the job requirements (e.g., operating 
system and applications) with available resources and selects the most ade-
quate resource for job19 submission. In the context of cloud computing, the 
understanding of the term job must be revised to include virtual appliances. 
Nevertheless, a cloud customer is interested in deploying his job at the most 
adequate resource, so a matchmaking process is required. Without the exis-
tence of a cloud resource broker, the matchmaking is carried out manually.

A consequence caused by a missing cloud resource broker and by the 
natural human behavior to prefer favorite service providers often leads to a 
vendor lock-in.20 The severity of the vendor lock-in problem is increased by 
proprietary and hence incompatible platform technologies at cloud provider 
level. For customers with data-intensive applications, it is difficult and expen-
sive to migrate to a different cloud provider.21 With the vendor lock-in, the 
customers strongly depend on the provided quality of service in a cloud (e.g., 
availability, reliability, and security). If a cloud suffers from poor availability, 
this implies poor availability of the customer’s services.

A problem already present in grid computing is the limited network band-
width between the data location and the computing resource. To bypass this 
bottleneck, commercial cloud providers started to physically mail portable 
storage devices to and from customers. For truly massive volumes of data, this 
“crude” mode of transferring data is relatively fast and cost-effective.22

1.4.2  Cloud Interfaces

A few years ago, standardization became one of the key factors in grid com-
puting. Middleware like gLite and UNICORE have adopted open standards 
such as the Open Grid Services Architecture (OGSA) (Basic Execution 
Services) (Foster et al., 2008) and the Job Submission Description Language 
(JSDL) (Anjomshoaa et al., 2005). For cloud computing, it is not apparent if 
providers are interested in creating a standardized API. This API would ease 
the migration of data and services among cloud providers and results in a more 
competitive market.

Analyzing APIs of various cloud providers reveals that a common standard 
is unattainable in the foreseeable future. Many providers offer an API similar 
to the one of Amazon EC2 because of its high acceptance among customers.

At the moment, API development goes into two directions. The first direc-
tion is very similar to the developments for platform virtualization: The overlay 

22 http://aws.amazon.com/importexport/.

21 Data transfers within a cloud are usually free, but in- and outgoing traffic are charged.

20 A vendor lock-in makes a customer dependent on a vendor for products and services, unable 
to use another vendor without substantial switching costs.

19 A grid job is a binary executable or command to be submitted and run in a remote resource 
(machine) called server or “gatekeeper.”

http://aws.amazon.com/importexport/


cloud computing    11

API libvirt23 was created, which supports various hypervisors (e.g., Xen, 
KVM, VMware, and VirtualBox). For cloud computing, there is the libcloud 
project24; the libcloud library hides inhomogeneous APIs of cloud providers 
(e.g., Slicehost, Rackspace, and Linode) from the user. The second direction 
tends toward a commonly accepted, standardized API for cloud providers. This 
API would make the development of libcloud needless.

The open cloud computing interface (OCCI) is one of the proposed API 
standards for cloud providers. It is targeted at providing a common interface 
for the management of resources hosted in IaaS clouds. OCCI allows resource 
aggregators to use a single common interface to multiple cloud resources and 
customers to interact with cloud resources in an ad hoc way (Edmonds et al., 
2009).

A client encodes the required resources in a URL (see Fig. 1.5). Basic 
operations for resource modifications (create, retrieve, update, and delete) are 
mapped to the corresponding http methods POST, GET, PUT, and DELETE 
(Fielding et al., 1999). For example, a POST request for the creation of a com-
puting resource looks similar to

POST /compute HTTP/1.1
Host: one.grid.tu-dortmund.de
Content-Length: 36
Content-Type: application/x-www-form-urlencoded
compute.cores=8&compute.memory=16384

Figure 1.5  open cloud computing interface api.

24 http://libcloud.apache.org.

23 http://libvirt.org/index.html.

http://libcloud.apache.org
http://libvirt.org/index.html


12    State-of-the-art technologieS for large-Scale computing 

Issuing this request triggers the creation of a virtual machine consisting of 
8 cores and 16 GB of memory. Other attributes that can be requested are the 
CPU architecture (e.g., x86), a valid DNS name for the host, and the CPU 
speed in gigahertz.

The provision of storage (e.g., a virtual hard disk drive) via OCCI requires 
the specification of the storage size in gigabyte. Users are able to query the 
status (online, off-line, or “degraded”) of the virtual storage, to back up, to 
resize, or for snapshot creation.

1.5  GRID AND CLOUD: TWO COMPLEMENTARY TECHNOLOGIES

Both grid and cloud computing are state-of-the-art technologies for large-scale 
computing. Grid and cloud computing could be viewed as mutually comple-
mentary technologies. Grid middleware is not likely to be replaced by cloud 
middleware because a cloud typically encompasses resources of only a single 
provider, while a grid spans resources of multiple providers. Nevertheless, 
compared with a grid resource, a cloud resource is more flexible because it 
adapts dynamically to the user requirements. Not surprisingly, one of the first 
“scientific” tasks clouds were used for was the deployment of virtual appli-
ances containing grid middleware services. In the first days of cloud computing, 
only public, pay-per-use clouds (e.g., Amazon EC2) were available. Therefore, 
this endeavor was carried out only (1) to show its feasibility and (2) for bench-
marking cloud capabilities of commercial providers. The added value of cloud 
computing was enough stimulus to develop open source computing and storage 
cloud solutions (e.g., OpenNebula,25 Eucalyptus26).

With grid and cloud computing to their disposal, national and international 
e-science initiatives (e.g., D-Grid27) are currently reviewing their activities, 
which are mainly focused on grid computing. One aspect of D-Grid is to 
provide discipline-specific environments for collaboration and resource sharing 
to researchers. Independent from the discipline, a common core technology 
should be utilized. With the advent of cloud computing and its success in recent 
years, it is planned to be added to the already existing core technology, namely, 
grid computing.

In this context, two trends toward interoperation of grids and clouds are 
emerging. The first is implied by the lessons learned so far from grid computing 
and refers to the creation of a grid of clouds. Similar to single computing and 
storage resources gathered in a grid, computing and storage resources of a 
cloud will become part of a larger structure. As briefly shown in Section 1.4, 
additional value-added services like a cloud resource broker can be part of 
such a structure. In a possible grid of cloud setup, an information system peri-

27 www.d-grid.de.

26 http://open.eucalyptus.com/.

25 http://opennebula.org/.

http://www.d-grid.de
http://open.eucalyptus.com/
http://opennebula.org/


modeling and Simulation of grid and cloud computing     13

odically queries cloud resources, for example, health status, pricing informa-
tion, and free capacities. This information is used by a cloud broker to find the 
most adequate resource to satisfy the user’s needs. The specification of a 
common cloud API standard would ease the task of creating such a cloud 
broker.

The second identified trend started with a gap analysis. A set of components 
required for the seamless integration of cloud resources into existing grid 
infrastructures will be the result of this analysis. Using D-Grid as an example 
for a national grid initiative, work in the fields of user management and 
authentication, information systems, and accounting have been identified. 
Usually, authentication in a grid is based on a security infrastructure using 
X.509 certificates and/or short-lived credentials. Some commercial cloud pro-
viders offer a similar interface accepting certificates, but often, a username/
password combination (e.g., EC2_ACCESS_KEY and EC2_SECRET_KEY for 
Amazon EC2) is employed for authentication.

Concerning the information systems, in D-Grid, each of the supported grid 
middlewares runs a separate one. The gLite middleware uses a combination 
of site and top-level BDII; (Web-)MDS is used in Globus Toolkit; and Common 
Information Service (CIS) is used in UNICORE6. The information provided 
by these systems is collected and aggregated by D-MON, a D-Grid monitoring 
service. D-MON uses an adapter for each type of supported grid middleware 
that converts the data received to an independent data format for further 
processing. To integrate information provided by a cloud middleware, a new 
adapter and the definition of measurement categories need to be developed.

After the creation of the missing components, grid and clouds are likely to 
coexist as part of e-science infrastructures.

1.6  MODELING AND SIMULATION OF GRID AND  
CLOUD COMPUTING

Today, modeling and simulation of large-scale computing systems are consid-
ered as a fruitful R&D area for algorithms and applications. With the increasing 
complexity of such environments, simulation technology has experienced great 
changes and has dealt with multiplatform distributed simulation, joining per-
formance, and structure. A high-performance simulator is necessary to investi-
gate various system configurations and to create different application scenarios 
before putting them into practice in real large-scale distributed computing 
systems. Consequently, simulation tools should enable researchers to study and 
evaluate developed methods and policies in a repeatable and controllable 
environment and to tune algorithm performance before deployment on opera-
tional systems. A grid or a cloud simulator has to be able to model heteroge-
neous computational components; to create resources, a network topology, and 
users; to enable the implementation of various job scheduling algorithms; to 
manage service pricing; and to output statistical results.



14    State-of-the-art technologieS for large-Scale computing 

The existing discrete-event simulation studies cover a small number of grid 
sites, with only a few hundreds of hosts, as well as large-scale use case grids, 
including thousands or millions of hosts. Common simulation studies deal with 
job scheduling and data replication algorithms to achieve better performance 
and high availability of data.

A list of grid simulation tools that implement one or more of the above-
mentioned functionalities include the following:

1. OptorSim (Bell et al., 2002) is being developed as part of the EU 
DataGrid project. It mainly emphasizes grid replication strategies and 
optimization.

2. SimGrid toolkit (Casanova, 2001), developed at the University of 
California at San Diego, is a C-based simulator for scheduling 
algorithms.

3. MicroGrid emulator (Song et al., 2000), developed at the University of 
California at San Diego, can be used for building grid infrastructures. It 
allows to execute applications, created using the Globus Toolkit, in a 
virtual grid environment.

4. GangSim (Dumitrescu and Foster, 2005), developed at the University of 
Chicago, aims to study the usage and scheduling policies in a multivirtual 
organization environment and is able to model real grids of consider-
able size.

1.6.1  GridSim and CloudSim Toolkits

GridSim (Sulistio et al., 2008) is a Java-based discrete-event grid simulation 
toolkit, developed at the University of Melbourne. It enables modeling and 
simulation of heterogeneous grid resources, users, and applications. Users can 
customize algorithms and workload.

At the lowest layer of the GridSim architecture operates the SimJava 
(Howell and McNab, 1998) discrete-event simulation engine. It provides 
GridSim with the core functionalities needed for higher-level simulation sce-
narios, such as queuing and processing of events, creation of system compo-
nents, communication between components, and management of the simulation 
clock.

The GridSim toolkit enables to run reproducible scenarios that are not 
possible in a real grid infrastructure. It supports high-level software compo-
nents for modeling multiple grid infrastructures and basic grid components 
such as the resources, workload traces, and information services. GridSim 
enables the modeling of different resource characteristics. Therefore, it allo-
cates incoming jobs based on space or time-shared mode. It is able to schedule 
compute- and data-intensive jobs; it allows easy implementation of different 
resource allocation algorithms; it supports reservation-based or auction mech-
anisms for resource allocation; it enables simulation of virtual organization 



Summary and outlook    15

scenarios; it is able to visualize tracing sequences of simulation execution; and 
it bases background network traffic characteristics on a probabilistic distribu-
tion (Buyya and Murshed, 2002).

CloudSim (Buyya et al., 2009) is a framework, also developed at the 
University of Melbourne, that enables modeling, simulation, and experiment-
ing on cloud computing infrastructures. It is built on top of GridSim (Fig. 1.6).

CloudSim is a platform that can be used to model data centers, service 
brokers, scheduling algorithms, and allocation policies of a large-scale cloud 
computing platform. It supports the creation of virtual machines on a simu-
lated node, cloudlets, and allows assigning jobs to appropriate virtual machines. 
It also enables simulation of various data centers to allow investigations on 
federation and related policies for the migration of virtual machines.

1.7  SUMMARY AND OUTLOOK

The demand for computing and storage resources has been increasing steadily 
over many years. In the past, static resources of multiple providers were sub-
sumed into a grid. The concept of resource sharing within a grid and its draw-
backs were described in Section 1.2. Section 1.3 introduced two different 
virtualization types: resource and platform virtualization. Especially, platform 
virtualization is one of the key enabling technologies for the concept of cloud 
computing. Cloud providers act as service providers and offer to customers 
software (SaaS), development platforms (PaaS), and infrastructure (IaaS). 
Section 1.4 provided a brief overview of cloud computing and the three main 
service types (SaaS, PaaS, and IaaS).

Section 1.5 provided an outlook on efforts attempting to integrate cloud 
and grid middleware. e-Science initiatives need to provide a uniform and 
simple interface to both types of resources to facilitate future developments.

Section 1.6 discussed the need to model and simulate grid and cloud envi-
ronments and important grid simulation toolkits (e.g., the Java-based simula-
tors GridSim and CloudSim).

Figure 1.6  cloudSim architecture layers. iface, interface; Vm, virtual machine.



16    State-of-the-art technologieS for large-Scale computing 

REFERENCES

L. Abadie, P. Badino, J. P. Baud, et al. Grid-enabled standards-based data management. 
In 24th IEEE Conference on Mass Storage Systems and Technologies, pp. 60–71, Los 
Alamitos, California, IEEE Computer Society. 2007.

C. Aiftimiei, M. Sgaravatto, L. Zangrando, et al. Design and implementation of the gLite 
CREAM job management service. Future Generation Computer Systems, 26(4):654–
667, 2010.

A. Anjomshoaa, F. Brisard, M. Drescher, et al. Job Submission Description Language 
(JSDL) Specification: Version 1.0, 2005. http://www.gridforum.org/documents/
GFD.56.pdf.

P. Badino, O. Barring, J. P. Baud, et al. The storage resource manager interface specifica-
tion version 2.2, 2009. http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html.

W. Bell, D. Cameron, L. Capozza, et al. Simulation of dynamic grid replication strategies 
in OptorSim. In M. Parashar, editor, Grid Computing, Volume 2536 of Lecture Notes 
in Computer Science, pp. 46–57, Berlin: Springer, 2002.

N. Bhatia and J. Vetter. Virtual cluster management with Xen. In L. Bougé, M. Alexander, 
S. Childs, et al., editors, Euro-Par 2007 Workshops: Parallel Processing, volume 4854 
of Lecture Notes in Computer Science, pp. 185–194, Berlin and Heidelberg: Springer-
Verlag, 2008.

F. Bunn, N. Simpson, R. Peglar, et al. Storage virtualization: SNIA technical  
tutorial, 2004. http://www.snia.org/sites/default/files/sniavirt.pdf.

S. Burke, S. Campana, E. Lanciotti, et al. gLite 3.1 user guide: Version 1.2, 2009. https://
edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.html.

R. Buyya and M. M. Murshed. GridSim: A toolkit for the modeling and simulation of 
distributed resource management and scheduling for grid computing. Concurrency 
and Computation: Practice and Experience, 14(13–15):1175–1220, 2002.

R. Buyya, R. Ranjan, and R. N. Calheiros. Modeling and simulation of scalable cloud 
computing environments and the CloudSim Toolkit: Challenges and opportunities. 
In Waleed W. Smari and John P. McIntire, editor, Proceedings of the 2009 International 
Conference on High Performance Computing and Simulation, pp. 1–11, Piscataway, 
NJ: IEEE, 2009.

H. Casanova. Simgrid: A toolkit for the simulation of application scheduling. In  
R. Buyya, editor, CCGRID’01: Proc. of the 1st Int’l Symposium on Cluster Computing 
and the Grid, pp. 430–441, Los Alamitos, CA: IEEE Computer Society, 2001.

C. L. Dumitrescu and I. Foster. GangSim: A simulator for grid scheduling studies. In 
CCGRID’05: Proc. of the 5th IEEE Int’l Symposium on Cluster Computing and the 
Grid, pp. 1151–1158, Washington, DC: IEEE Computer Society, 2005.

A. Edmonds, S. Johnston, G. Mazzaferro, et al. Open Cloud Computing Interface 
Specification version 5, 2009. http://forge.ogf.org/sf/go/doc15731.

R. Fielding, J. Gettys, J. Mogul, et al. RFC 2616: Hypertext transfer protocol—HTTP/1.1. 
Status: Standards Track, 1999. http://www.ietf.org/rfc/rfc2616.txt.

I. Foster. What is the grid?—A three point checklist. GRIDToday, 1(6):22–25, 2002.
I. Foster. Globus Toolkit version 4: Software for service-oriented systems. In Network 

and parallel computing, pp. 2–13, 2005.

http://www.gridforum.org/documents/GFD.56.pdf
http://www.gridforum.org/documents/GFD.56.pdf
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
http://www.snia.org/sites/default/files/sniavirt.pdf
http://https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.html
http://https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.html
http://forge.ogf.org/sf/go/doc15731
http://www.ietf.org/rfc/rfc2616.txt


referenceS    17

I. Foster, A. Grimshaw, P. Lane, et al. OGSA basic execution service: Version 1.0, 2008. 
http://www.ogf.org/documents/GFD.108.pdf.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable 
virtual organizations. Int’l Journal of High Performance Computing Applications, 
15(3):200–222, 2001.

F. Howell and R. McNab. SimJava: A discrete event simulation library for Java. In Int’l 
Conference on Web-Based Modeling and Simulation, pp. 51–56, 1998.

IEEE Computer Society. IEEE standard for local and metropolitan area networks 
virtual bridged local area networks, 2006. http://ieeexplore.ieee.org.

A Mowshowitz. Virtual organization. Communications of the ACM, 40(9):30–37, 1997.
H. J. Song, X. Liu, D. Jakobsen, et al. The MicroGrid: A scientific tool for modeling 

computational grids. Scientific Programming, 8(3):127–141, 2000.
A. Sulistio, R. Buyya, U. Cibej, et al. A toolkit for modelling and simulating data grids: 

An extension to GridSim. Concurrency and Computation: Practice and Experience, 
20(13):1591–1609, 2008.

J. Tate. Virtualization in a SAN, 2003. http://www.redbooks.ibm.com/redpapers/pdfs/
redp3633.pdf.

J. E. Thornton. Parallel operation in the control data 6600. In AFIPS 1964 Fall Joint 
Computer Conference, pp. 33–41, Spartan Books, 1965.

L. M. Vaquero, L. Rodero-Merino, J. Caceres, et al. A break in the clouds: Towards a 
cloud definition. ACM SIGCOMM Computer Communication Review, 39(1):50–55, 
2009.

http://www.ogf.org/documents/GFD.108.pdf
http://ieeexplore.ieee.org
http://www.redbooks.ibm.com/redpapers/pdfs/redp3633.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp3633.pdf




Chapter 2
The e-Infrastructure 

Ecosystem: Providing 
Local Support to  

Global Science
Erwin Laure and Åke Edlund

KTH Royal Institute of Technology, Stockholm, Sweden

2.1  THE WORLDWIDE E-INFRASTRUCTURE LANDSCAPE

Modern science is increasingly dependent on information and communication 
technologies (ICTs), analyzing huge amounts of data (in the terabyte and pet-
abyte range), running large-scale simulations requiring thousands of CPUs (in 
the teraflop and petaflop range), and sharing results between different research 
groups. This collaborative way of doing science has led to the creation of virtual 
organizations that combine researches and resources (instruments, computing, 
and data) across traditional administrative and organizational domains (Foster 
et al., 2001). Advances in networking and distributed computing techniques 
have enabled the establishment of such virtual organizations, and more and 
more scientific disciplines are using this concept, which is also referred to as 
grid computing (Foster and Kesselman, 2003; Lamanna and Laure, 2008). The 
past years have shown the benefit of basing grid computing on a well-managed 

19

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski, 
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



20    PROVIDING LOCAL SUPPORT TO GLOBAL SCIENCE

infrastructure federating the network, storage, and computing resources across 
a big number of institutions and making them available to different scientific 
communities via well-defined protocols and interfaces exposed by a software 
layer (grid middleware). This kind of federated infrastructure is referred to as 
e-infrastructure. Europe is playing a leading role in building multinational, 
multidisciplinary e-infrastructures. Initially, these efforts were driven by aca-
demic proof-of-concept and test-bed projects, such as the European Data Grid 
Project (Gagliardi et al., 2006), but have since developed into large-scale,  
production e-infrastructures supporting numerous scientific communities. 
Leading these efforts is a small number of large-scale flagship projects, mostly 
cofunded by the European Commission, which take the collected results of 
predecessor projects forward into new areas. Among these flagship projects,  
the Enabling Grids for E-sciencE (EGEE) project unites thematic, national, 
and regional grid initiatives in order to provide an e-infrastructure available  
to all scientific research in Europe and beyond in support of the European 
Research Area (Laure and Jones, 2009). But EGEE is only one of many 
e-infrastructures that have been established all over the world. These include 
the U.S.-based Open Science Grid (OSG)1 and TeraGrid2 projects, the Japanese 
National Research Grid Initiative (NAREGI)3 project, and the Distributed 
European Infrastructure for Supercomputing Applications (DEISA)4 project, 
a number of projects that extend the EGEE infrastructure to new regions (see 
Table 2.1), as well as (multi)national efforts like the U.K. National Science  
Grid (NGS),5 the Northern Data Grid Facility (NDGF)6 in northern Europe, 

TABLE 2.1  Regional e-Infrastructure Projects Connected to EGEE

Project Web Site Countries Involved

BalticGrid http://www.balticgrid.eu Estonia, Latvia, Lithuania, Belarus, Poland, 
Switzerland, and Sweden

EELA http://www.eu-eela.org Chile, Cuba, Italy
Argentina, Brazil
Mexico, Peru, Portugal, Spain, Venezuela

EUChinaGrid http://www.euchinagrid.eu China, Greece, Italy, Poland, and Taiwan
EUIndiaGrid http://www.eumedgrid.eu India, Italy, and United Kingdom
EUMedGrid http://www.euindiagrid.eu Algeria, Cyprus, Egypt, Greece, Jordan

Israel, Italy, Malta, Morocco, Palestine
Spain, Syria, Tunisia, Turkey, United Kingdom

SEE-GRID http://www.see-grid.eu Croatia, Greece, Hungary, FYR of Macedonia
Albania, Bulgaria, Bosnia and Herzegovina
Moldova, Montenegro, Romania, Serbia, Turkey

6 http://www.ndgf.org.

5 http://www.ngs.ac.uk.

4 http://www.deisa.org.

3 http://www.naregi.org.

2 http://www.teragrid.org.

1 http://www.opensciencegrid.org.

http://www.balticgrid.eu
http://www.eu-eela.org
http://www.euchinagrid.eu
http://www.eumedgrid.eu
http://www.euindiagrid.eu
http://www.see-grid.eu
http://www.ndgf.org
http://www.ngs.ac.uk
http://www.deisa.org
http://www.naregi.org
http://www.teragrid.org
http://www.opensciencegrid.org


A REGIONAL E-INfRASTRUCTURE, LEVERAGING ON ThE GLOBAL “MOThERShIP” EGEE    21

and the German D-Grid.7 Together, these projects cover large parts of the 
world and a wide variety of hardware systems.

In all these efforts, providing support and bringing the technology as close 
as possible to the scientist are of utmost importance. Experience has shown 
that users require local support when dealing with new technologies rather 
than a relatively anonymous European-scale infrastructure. This local support 
has been implemented, for instance, by EGEE through regional operation 
centers (ROCs) as well as DEISA, which assigns home sites to users, which 
are providing user support and a base storage infrastructure. In a federated 
model, local support can be provided by national or regional e-infrastructures, 
as successfully demonstrated by the national and regional projects mentioned 
earlier. These projects federate with international projects like EGEE to form 
a rich infrastructure ecosystem under the motto “think globally, act locally.” 
In the remainder of this chapter, we exemplify this strategy on the BalticGrid 
and EGEE projects, discuss the impact of clouds on the ecosystem, and provide 
an outlook on future developments.

2.2  BALTICGRID: A REGIONAL E-INFRASTRUCTURE, LEVERAGING 
ON THE GLOBAL “MOTHERSHIP” EGEE

To establish a production-quality e-infrastructure in a greenfield region like 
the Baltic region, a dedicated project was established, the BalticGrid8 project. 
According to the principle of think globally, act locally, the aim of the project 
was to build a regional e-infrastructure that seamlessly integrates with the 
international e-infrastructure of EGEE. In the first phase of the BalticGrid 
project, starting in 2005, the necessary network and middleware infrastructure 
was rolled out and connected to EGEE. The main objective of BalticGrid’s 
second phase, BalticGrid-II (2008–2010), was to further increase the impact, 
adoption, and reach of e-science infrastructures to scientists in the Baltic 
States and Belarus, as well as to further improve the support of services and 
users of grid infrastructures. As with its predecessor BalticGrid, BalticGrid-II 
continued with strong links with EGEE and its technologies, with gLite (Laure 
et al., 2006) as the underlying middleware of the project’s infrastructure.

2.2.1  The BalticGrid Infrastructure

The BalticGrid infrastructure is in production since 2006 and has been used 
significantly by the regional scientific community. The infrastructure consists 
of 26 clusters in five countries, of which 18 are on the EGEE production infra-
structure, with more than 3500 CPU cores, 230 terabytes of storage space.

One of the first challenges of the BalticGrid project was to establish a reli-
able network in Estonia, Latvia, and Lithuania as well as to ensure optimal 

8 http://www.balticgrid.eu.

7 http://www.d-grid.org.

http://www.balticgrid.eu
http://www.d-grid.org


22    PROVIDING LOCAL SUPPORT TO GLOBAL SCIENCE

network performance for large file transfers and interactive traffic associated 
with grids. This was successfully achieved in the projects in the first year 
exploiting the European GéANT network infrastructure, adding Belarus in 
the second phase.

2.2.2  BalticGrid Applications: Providing Local Support to  
Global Science

The resulting BalticGrid infrastructure supports and helps scientists from the 
region to foster the use of modern computation and data storage systems, 
enabling them to gain knowledge and experience to work in the European 
research area.

The main application areas within the BalticGrid are from high-energy 
physics, materials science and quantum chemistry, framework for engineering 
modeling tasks, bioinformatics and biomedical imaging, experimental astro-
physical thermonuclear fusion (in the framework of the ITER project), lin-
guistics, as well as operational modeling of the Baltic Sea ecosystem.

To support these, a number of applications have been ported, often leverag-
ing on earlier EGEE work, to the BalticGrid:

• ATOM: a set of computer programs for theoretical studies of atoms
• Complex Comparison of Protein Structures: an application that offers a 

method applied for the exploration of potential evolutionary relation-
ships between the CATH protein domains and their characteristics

• Crystal06: a quantum chemistry package to model periodic systems
• Computational Fluid Dynamics (FEMTOOL): modeling of viscous 

incompressible free surface flows
• DALTON 2.0: a powerful molecular electronic structure program with 

extensive functions for the calculation of molecular properties at different 
levels of theory

• Density of Montreal: a molecular electronic structure program
• ElectroCap Stellar Rates of Electron Capture: a set of computer codes 

produce nuclear physics input for core-collapse supernova simulations
• Foundation Engineering (Grill): global optimization of grillage-type 

foundations using genetic algorithms
• MATLAB: distributed computing server
• MOSES SMT Toolkit (with SRILM): a factored phrase-based beam 

search decoder for machine translators
• NWChem: a computational chemistry package
• Particle Technology (DEMMAT): particle flows, nanopowders, and mate-

rial structure modeling on a microscopic level using the discrete element 
method



A REGIONAL E-INfRASTRUCTURE, LEVERAGING ON ThE GLOBAL “MOThERShIP” EGEE    23

• Polarization and Angular Distributions in Electron-Impact Excitation of 
Atoms (PADEEA)

• Vilnius Parallel Shell Model Code: an implementation of nuclear spheri-
cal shell model approach

2.2.3  The Pilot Applications

To test, validate, and update the support model, a smaller set of pilot applica-
tions was chosen. These applications received special attention during the 
initial phase of BalticGrid-II and helped shape BalticGrid’s robust and cost-
efficient overall support model.

2.2.3.1  Particle Technology (DEMMAT)  The development of the appro-
priate theoretical framework as well as numerical research tools for the predic-
tion of constitutive behavior with respect to microstructure belongs to major 
problems of computational sciences. In general, the macroscopic material 
behavior is predefined by the structure of grains of various sizes and shapes, 
or even by individual molecules or atoms. Their motion and interaction have 
to be taken into account to achieve a high degree of accuracy. The discrete 
element method is an attractive candidate to be applied for modeling granular 
flows, nanopowders, and other materials on a microscopic level. It belongs to 
the family of numerical methods and refers to conceptual framework on the 
basis of which appropriate models, algorithms, and computational technolo-
gies are derived (Fig. 2.1).

The main disadvantages of the discrete element method technique, in com-
parison to the well-known continuum methods, are related to computational 
capabilities that are needed to handle a large number of particles and a short 
time interval of simulations. The small time step imposed in the explicit time 
integration schemes gives rise to the requirement that a very large number of 
time increments should be performed. Grid and distributed computing tech-
nologies are a standard way to address industrial-scale computing problems. 

Figure 2.1  Particle flow during hopper discharge. Particles are colored according to resultant 
force.



24    PROVIDING LOCAL SUPPORT TO GLOBAL SCIENCE

Interdisciplinary cooperation and development of new technologies are major 
factors driving the progress of discrete element method models and their 
countless applications (e.g., nanopowders, compacting, mixing, hopper dis-
charge, and crack propagation in building constructions).

2.2.3.2  Materials Science, Quantum Chemistry  NWChem9 is a compu-
tational chemistry package that has been developed by the Molecular Sciences 
Software group of the Environmental Molecular Sciences Laboratory at the 
Pacific Northwest National Laboratory, USA.

NWChem provides many methods to compute the properties of molecular 
and periodic systems using standard quantum mechanical descriptions of the 
electronic wave function or density. In addition, NWChem has the capability 
to perform classical molecular dynamics and free energy simulations. These 
approaches may be combined to perform mixed quantum mechanics and 
molecular mechanics simulations.

2.2.3.3  CORPLT:  Corpus  of  Academic  Lithuanian  The corpus (large 
and structured set of texts) was designed as a specialized corpus for the study 
of academic Lithuanian, and it will be the first synchronic corpus of academic 
written Lithuanian in Lithuania. It will be a major resource of authentic lan-
guage data for linguistic research of academic discourse, for interdisciplinary 
studies, lexicographical practice, and terminology studies in theory and prac-
tice. The compilation of the corpus will follow the most important criteria: 
methods, balance, representativeness, sampling, TEI P5 Guidelines, and so on. 
The grid application will be used for testing algorithms of automatic encoding, 
annotation, and search-analysis steps. Encoding covers recognition of text 
parts (sections, titles, etc.) and correcting of text flow. Linguistic annotation 
consists of part of speech tagging, part of sentence tagging, and so on. The 
search-analysis part deals with the complexity level of the search and tries to 
distribute and effectively deal with the load for corpus services.

2.2.3.4  Complex  Comparison  of  Protein  Structures  The Complex 
Comparison of Protein Structures application supports the exploration of 
potential evolutionary relationships between the CATCH protein domains 
and their characteristics and uses an approach called 3D graphs. This tool 
facilitates the detection of structural similarities as well as possible fold muta-
tions between proteins.

The method employed by the Complex Comparison of Protein Structures 
tool consists of two stages:

• Stage 1: all-against-all comparison of CATCH domains by the ESSM 
software

• Stage 2: construction of fold space graphs on the basis of the output of 
the first stage

9 http://www.nwchem-sw.org.

http://www.nwchem-sw.org


ThE EGEE INfRASTRUCTURE    25

This method is used for evolutionary aspects of protein structure and func-
tion. It is based on the assumption that protein structures, similar to sequences, 
have evolved by a stepwise process, each step involving a small change in 
protein fold. The application (“gridified” within BalticGrid-II) accesses the 
Protein DataBase to compare proteins individually and in parallel.

2.2.4  BalticGrid’s Support Model

By working with these pilot applications, a robust, scalable, and cost-efficient 
support model could be developed. Although usually seen as a homogeneous 
region, the Baltic states expose significant differences, with different languages, 
different cultures, and different ways local scientists use to interact with their 
resource providers. Due to these differences, local support structures in the 
individual countries have been established to provide users with the best pos-
sible local support. These local support teams interact with resource providers 
irrespective of their origin and build upon a joint knowledge base consisting of 
Web sites, FAQs, user guides, and manuals that is constantly enriched by the 
support teams. This knowledge base is also available to the users, reducing the 
need to contact support. The overall support model is depicted in Figure 2.2.

2.3  THE EGEE INFRASTRUCTURE

The BalticGrid example mentioned earlier is to be seen as an extension of 
EGEE, given that a large number of BalticGrid sites are EGEE certified and 

Figure 2.2  The BalticGrid support model.



26    PROVIDING LOCAL SUPPORT TO GLOBAL SCIENCE

are utilized by the EGEE users. As a result, we have both global users using 
resources from BalticGrid, as well as BalticGrid users participating and using 
global resources from the full EGEE setting. To complete the picture, an 
overview of EGEE is given next; more detailed descriptions can be found in 
Laure et al. (2006) and in Laure and Jones (2009).

The EGEE project is a multiphase program starting in 2004 and expected 
to end in 2010. EGEE has built a pan-European e-infrastructure that is being 
increasingly used by a variety of scientific disciplines. EGEE has also expanded 
to the Americas and the Asia Pacific, working toward a worldwide 
e-infrastructure. EGEE (October 2009 data) federates more then 260 resource 
centers from 55 countries, providing over 150,000 CPU cores and 28 petabytes 
of disk storage and 41 petabytes of long-term tape storage. The infrastructure 
is routinely being used by over 5000 users forming some 200 virtual organiza-
tions and running over 330,000 jobs per day. EGEE users come from disci-
plines as diverse as archaeology, astronomy, astrophysics, computational 
chemistry, earth science, finance, fusion, geophysics, high-energy physics, life 
sciences, materials sciences, and many more.

The EGEE infrastructure consists of a set of services and test beds, and the 
management processes and organizations that support them.

2.3.1  The EGEE Production Service

The computing and storage resources EGEE integrates are provided by a 
large and growing number of resource centers, mostly in Europe but also in 
the Americas and the Asia Pacific.

EGEE has decided that a central coordination of these resource centers 
would not be viable mainly because of scaling issues. Hence, EGEE has devel-
oped a distributed operations model where ROCs take over the responsibility 
of managing the resource centers in their region. Regions are defined geo-
graphically and include up to eight countries. This setup allows adjusting the 
operational procedures to local peculiarities like legal constraints, languages, 
and best practices. Currently, EGEE has 11 ROCs managing between 12 and 
38 sites. CERN acts as a special catchall ROC taking over responsibilities for 
sites in regions not covered by an existing ROC. Once the number of sites in 
that region has reached a significant number (typically over 10), the creation 
of a new ROC is envisaged. EGEE’s ROC model has proven very successful, 
allowing the fourfold growth of the infrastructure (in terms of sites) to happen 
without any impact on the service.

ROCs are coordinated by the overall Operations Coordination located at 
CERN. Coordination mainly happens through weekly operations meetings 
where issues from the different ROCs are being discussed and resolved. A 
so-called grid operator on duty is constantly monitoring the health of the 
EGEE infrastructure using a variety of monitoring tools and initiates actions 
in case services or sites are not in a good state. EGEE requires personnel at 
resource centers that manage the grid services offered and take corrective 



ThE EGEE INfRASTRUCTURE    27

measures in case of problems. Service-level agreements are being set up between 
EGEE and the resource centers to fully define the required level of commit-
ment, which may differ between centers. The Operations Coordination is also 
responsible for releasing the middleware distribution for deployment; individual 
sites are supported by their ROC in installing and configuring the middleware.

Security is a cornerstone of EGEE’s operation and the Operational Security 
Coordination Group is coordinating the security-related operations at all 
EGEE sites. In particular, the EGEE Security Officer interacts with the site’s 
security contacts and ensures security-related problems are properly handled, 
security policies are adhered to, and the general awareness of security-related 
issues is raised. EGEE’s security policies are defined by the Joint Security 
Policy Group, a group jointly operated by EGEE, the U.S. OSG project, and 
the Worldwide LHC Computing Grid project (LCG).10 Further security-
related policies are set by the EUGridPMA and the International Grid Trust 
Federation (IGTF),11 the bodies approving certificate authorities and thus 
establishing trust between different actors on the EGEE infrastructure. A 
dedicated Grid Security Vulnerability Group proactively analyzes the EGEE 
infrastructure and its services to detect potential security problems early on 
and to initiate their remedy. The EGEE security infrastructure is based on 
X.509 proxy certificates which allow to implement the security policies both 
at site level as well as on grid-wide services.

The EGEE infrastructure is federating resources and making them easily 
accessible but does not own the resources itself. Instead, the resources acces-
sible belong to independent resource centers that procure their resources and 
allow access to them based on their particular funding schemes and policies. 
Federating the resources through EGEE allows the resource centers to offer 
seamless, homogeneous access mechanisms to their users as well as to support 
a variety of application domains through the EGEE virtual organizations. 
Hence, EGEE on its own cannot take any decision on how to assign resources 
to virtual organizations and applications. EGEE merely provides a market-
place where resource providers and potential users negotiate the terms of 
usage on their own. EGEE facilitates this negotiation in terms of the Resource 
Access Group, which brings together application representatives and the 
ROCs. Overall, about 20% of the EGEE resources are provided by nonpart-
ner organizations, and while the majority of the EGEE resource centers are 
academic institutions, several industrial resource centers participate on the 
EGEE infrastructure to gain operational experience and to offer their 
resources to selected research groups.

All EGEE resources centers and particularly ROCs are actively supporting 
their users. As it is sometimes difficult for a user to understand which part of 
the EGEE infrastructure is responsible for a particular support action, EGEE 
operates the Global Grid User Support (GGUS). This support system is used 

11 http://www.gridpma.org/.

10 http://cern.ch/lcg.

http://www.gridpma.org/
http://cern.ch/lcg


28    PROVIDING LOCAL SUPPORT TO GLOBAL SCIENCE

throughout the project as a central entry point for managing problem reports 
and tickets, for operations, as well as for user, virtual organization, and applica-
tion support. The system is interfaced to a variety of other ticketing systems 
in use in the regions/ROCs. This is in order that tickets reported locally can 
be passed to GGUS or other areas, and that operational problem tickets  
can be pushed down into local support infrastructures. Overall, GGUS deals 
on average with over 1000 tickets per month, half of them due to the ticket 
exchange with network operators as explained next.

All usage of the EGEE infrastructure is accounted and all sites collect 
usage records based on the Open Grid Forum (OGF)12 usage record recom-
mendations. These records are both stored at the site and pushed into a global 
database that allows retrieving statistics on the usage per virtual organization, 
regions, countries, and sites. Usage records are anonymized when pushed into 
the global database, which allows retrieving them via a Web interface.13 The 
accounting data are also gradually used to monitor service-level agreements 
that virtual organizations have set up with sites.

EGEE also provides an extensive training program to enable users to effi-
ciently exploit the infrastructure. A description of this training program is out 
of the scope of this chapter and the interested reader is referred to the EGEE 
training Web site14 for further information.

An e-infrastructure is highly dependent on the underlying network provi-
sioning. EGEE is relying on the European Research Network operated by 
DANTE and the National Research and Educational Networks. The EGEE 
Network Operations Center links EGEE to the network operations and 
ensures both EGEE and the network operations are aware of requirements, 
problems, and new developments. Particularly, the network operators push 
their trouble tickets into GGUS, thus integrating them into the standard 
EGEE support structures.

2.3.2  EGEE and BalticGrid: e-Infrastructures in Symbiosis

To fully leverage on the EGEE project success, BalticGrid has reused much 
of the work done with respect to operations, support organization, education, 
dissemination, and so forth, as well as all the work put into the EGEE middle-
ware gLite. The goal in making as many BalticGrid sites EGEE certified, that 
is, seamless parts of the overall EGEE infrastructure, is to enable users from 
the Baltic and Belarus region to participate as much as possible in the global 
research projects.

From the EGEE perspective, BalticGrid is expanding the reach and increas-
ing the total capacity of the infrastructure. In addition, BalticGrid has been a 

14 http://www.egee.nesc.ac.uk.

13 http://www3.egee.cesga.es/gridsite/accounting/CESGA/egee_view.php.

12 http://www.ogf.org.

http://www.egee.nesc.ac.uk
http://www3.egee.cesga.es/gridsite/accounting/CESGA/egee_view.php
http://www.ogf.org


INDUSTRy AND E-INfRASTRUCTURES: ThE BALTIC ExAMPLE    29

test and meeting point for coexisting middlewares, gLite with ARC15 and 
UNICORE.16

The larger project has helped the smaller to a very quick and economic 
launch. This was achieved by serving the smaller project with already prepared 
structures, policies, and middleware. The smaller project, being more flexible 
due to its size, has acted as a test bed for aspects such as interoperability of 
middlewares and the deployment and use of cloud computing for small and 
medium enterprises (SMEs) and start-up companies.

The cooperation of the two projects is intended to improve the environment 
for their users.

2.4  INDUSTRY AND E-INFRASTRUCTURES: THE BALTIC EXAMPLE

2.4.1  Industry and Grids

Industry and academia share many of the challenges in using distributed envi-
ronments in cost-efficient and secure ways. To learn more from each other, 
there have been a number of initiatives to further engage the industry to par-
ticipate in academic grid projects.

Examples are mainly from life science, materials science, but also econom-
ics, where financial institutions are using parts of the open source grid middle-
ware developed by academic projects. In addition, there have been some 
spin-offs from academia resulting in enterprise software offerings, for example, 
the UNIVA17 start-up company with founders from the academic and open 
source community.

The overall uptake of grid technology by small- and medium-sized compa-
nies has not been as high as first anticipated. One reason is possibly the com-
plexity of the underlying problem—to share resources in a seamless fashion, 
introducing a number of complex techniques to ensure this functionality in a 
secure and controlled fashion. In many ways, the grid offering is very useful 
from a business perspective, for example, establishing new markets for 
resources, but to this day, still much work is needed from the user to join such 
environments, and much work is needed to port users’ applications to use the 
grid systems. This is, to a large extent due to the academic focus of most grid 
projects that put higher weights on functionality and performance than on user 
experiences. The biggest obstacles encountered were the usage of X.509 cer-
tificates as authentication means as well as the different interfaces and seman-
tics of grid services originating from different research groups. Standardization 
efforts (Riedel et al., 2009) aim at overcoming the latter problem. In addition, 
to share resources as a concept is still considered a big barrier in many indus-
tries also within corporations, and security, especially mutual trust issues, is 

17 http://www.univaud.com.

16 http://www.unicore.eu.

15 http://www.nordugrid.org/middleware.

http://www.univaud.com
http://www.unicore.eu
http://www.nordugrid.org/middleware


30    PROVIDING LOCAL SUPPORT TO GLOBAL SCIENCE

usually the first obstacle mentioned. Another issue is the overall quality of the 
open source middlewares, still considered too low for many companies.

2.4.2  Industry and Clouds, Clouds and e-Infrastructures

In the commercial sector, dynamic resource and service provisioning as well 
as “pay-per-use” concepts are being pushed to the next level with the introduc-
tion of “cloud computing,” successfully pioneered by Amazon with their 
Elastic Compute Cloud and Simple Storage Service offerings. Many other 
major IT businesses offer cloud services today, including Google, IBM, and 
Microsoft. Using virtualization techniques, these infrastructures allow dynamic 
service provisioning and give the user the illusion of having access to virtually 
unlimited resources on demand. This computing model is particularly interest-
ing for start-up ventures with limited IT resources as well as for dynamic 
provisioning of additional resources to cope with peak demands, rather than 
overprovisioning one’s own infrastructure. As of today, the usability of these 
commercial offerings for research remains yet to be shown, although a few 
promising experiments have already been performed. In principle, clouds 
could be considered yet another resource provider in e-infrastructures, with a 
need to bridge the different interfaces and operational procedures to provide 
the researcher with a seamless infrastructure. More work on interface stan-
dardization and on how commercial offerings can be made part of the opera-
tions of academic research infrastructures is needed.

2.4.3  Clouds: A New Way to Attract SMEs and Start-Ups

Compared to grid, in cloud services, the ambition and the resulting complexity 
is lower, resulting in a lower barrier for the user as well as higher security, 
availability, and quality. All these simplifications, with the high degree of flex-
ibility, has caught great interest from the industry, and while open grid efforts 
are led by academia, cloud computing is, to a high degree, business driven.

For smaller companies, flexibility is the key to be able to quickly launch and 
delaunch, and to be able to move capital investments (buying hardware) to 
operation expenses (hiring infrastructure, pay-per-use). Larger companies are 
more hesitant, trying clouds in a stepwise manner, combining private clouds 
with public-clouds-when-needed, so called hybrid clouds.

First out of the smaller companies are the newly started ones, the start-ups. 
For many of these companies there are no alternatives but to use all means 
of cost minimization, and here cloud computing fits very well. Start-ups do not 
have much time in building their own infrastructure and usually do not really 
know what they will need in the near future, and here cloud computing offers 
a quick launch, as well as delaunch, when needed. Investors are also benefiting 
from this shift in cost models, lowering their initial risks and getting quick 
proof of concept, still with scalable solutions in case of early success.



ThE fUTURE Of EUROPEAN E-INfRASTRUCTURES    31

2.4.3.1  BalticGrid  Innovation Lab  (BGi)  Within the BalticGrid project, 
a focused effort to attract SMEs and start-ups to use the regional e-infrastructure 
was made, resulting in the creation of the BGi.18 BGi aims to educate early-
stage start-ups in the use of BalticGrid resources, mainly through a cloud 
interface—the BalticCloud.19 BalticCloud is a cloud infrastructure based on 
open source solutions (Eucalyptus, OpenNebula) (Sotomayor et al., 2008; 
Nurmi et al., 2009). At BGi, companies learn about how to leverage on cloud 
computing, both to change their cost model and possibly to lower their own 
internal IT costs (Assuncao et al., 2009). Companies learn also how to prepare 
short-term pilots, prototyping, and novel services to their customers. BGi is 
also a business networking effort, all with BalticGrid in common.

2.4.3.2  Clouds  and  SMEs:  Lessons  Learned  BGi, together with 
BalticCloud, shows a way to attract SMEs and start-ups in the region, and the 
experience so far is very positive. Early examples are from the movie produc-
tion industry (rendering on BalticCloud) and larger IT infrastructure compa-
nies preparing cloud services for start-ups. The project has also produced a 
number of cloud consultancy firms, and there is a growing interest of cloud 
support for innovation services, for example, incubators, in the region.

2.5  THE FUTURE OF EUROPEAN E-INFRASTRUCTURES: THE 
EUROPEAN GRID INITIATIVE (EGI) AND THE PARTNERSHIP FOR 
ADVANCED COMPUTING IN EUROPE (PRACE) INFRASTRUCTURES

The establishment of a European e-infrastructure ecosystem is currently pro-
gressing along two distinct paths: EGI and PRACE. EGI intends to federate 
national and regional e-infrastructures, managed locally by National Grid 
Initiatives (NGIs) into a pan-European, general-purpose e-infrastructure as 
pioneered by the EGEE project that unites thematic, national, and regional 
grid initiatives. EGI is a direct result of the European e-Infrastructure 
Reflection Group (e-IRG) recommendation to develop a sustainable base for 
European e-infrastructures. Most importantly, funding schemes are being 
changed from short-term project funding (like 2 years’ funding periods in the 
case of EGEE) to sustained funding on a national basis. This provides research-
ers with the long-term perspective needed for multiyear research engage-
ments. All European countries support the EGI vision, with final launch during 
2010. Unlike EGEE, which has strong central control, EGI will consist of 
largely autonomous NGIs with a lightweight coordination entity on the 
European level. This setup asks for an increased usage of standardized services 
and operational procedures to enable a smooth integration of different NGIs 
exposing a common layer to the user while preserving their own autonomy. In 

19 http://cloud.balticgrid.eu.

18 http://www.balticgrid.eu/bgi.

http://cloud.balticgrid.eu
http://www.balticgrid.eu/bgi


32    PROVIDING LOCAL SUPPORT TO GLOBAL SCIENCE

this context, the work of the OGF is of particular importance. The goal of OGF 
is to harmonize these different interfaces and protocols and to develop stan-
dards that will allow interoperable, seamlessly accessible services. One notable 
effort in this organization where all of the above-mentioned projects work 
together is the Grid Interoperation Now (GIN) (Riedel et al., 2009) group. 
Through this framework, the mentioned infrastructures work to make their 
systems interoperate with one another through best practices and common 
rules. GIN does not intend to define standards but to provide the groundwork 
for future standardization performed in other groups of OGF. Already this has 
led to seamless interoperation between OSG and EGEE, allowing jobs to 
freely migrate between the infrastructures as well as seamless data access using 
a single sign-on. Similar efforts are currently ongoing with NAREGI, DEISA, 
and NDGF. As part of the OGF GIN effort, a common service discovery index 
of nine major grid infrastructures worldwide has been created, allowing users 
to discover the different services available from a single portal. A similar effort 
aiming at harmonizing the policies for gaining access to these infrastructures 
is under way.

At the same time, the e-IRG has recognized the need to provide European 
researchers with access to petaflop-range supercomputers in addition to high-
throughput resources that are prevailing in EGI. PRACE aims to define the 
legal and organizational structures for a pan-European high-performance 
computing (HPC) service in the petaflop range. These petaflop-range systems 
are supposed to complement the existing European HPC e-infrastructure as 
pioneered by the DEISA project. DEISA is federating major European HPC 
centers in a common e-infrastructure providing seamless access to supercom-
puting resources and, thanks to a global shared file system, data stored at the 
various centers. This leads to a three-tier structure, with the European petaflop 
systems at Tier-0 being supported by leading national systems at Tier-1. 
Regional and midrange systems complement this HPC pyramid at Tier-2 as 
depicted in Figure 2.3.

Although the goals of PRACE/DEISA are similar to the ones of EGI/
EGEE, the different usage and organizational requirements demand a differ-
ent approach, and hence the establishment of two independent yet related 
infrastructures. For researchers, it is important, however, to have access to all 
infrastructures in a seamless manner; hence, a convergence of the services and 
operational models in a similar way as discussed in the EGI/NGI case men-
tioned earlier will be needed.

2.5.1  Layers of the Ecosystem

This convergence and the addition of other tools (like sensors, for instance) 
will eventually build the computing and data layer of the e-infrastructure 
ecosystem. Leveraging the physically wide area connectivity provided by the 
network infrastructure (operated by GéANT and the National Research and 
Education Networks in Europe), this computing and data layer facilitates the 



SUMMARy    33

construction of domain-specific knowledge layers that provide user communi-
ties with higher-level abstractions, allowing them to focus on their science 
rather than on the computing technicalities. The resulting three-layered eco-
system is depicted in Figure 2.4.

2.6  SUMMARY

In summary, a variety of different e-infrastructures are available today to 
support e-research. Convergence of these infrastructures in terms of interfaces 
and policies is needed to provide researchers with seamless access to the 
resources required for their research, independently of how the resource pro-
visioning is actually managed. Eventually, a multilayer ecosystem will greatly 
reduce the need for scientists to manage their computing and data infrastruc-
ture, with a knowledge layer eventually providing high-level abstractions 
according to the needs of different disciplines. Initial elements of such an 
e-infrastructure ecosystem already exist, and Europe is actively striving for 
sustainability to ensure that it continues to build a reliable basis for e-research.

Figure 2.3  hPC ecosystem.

Tier-0:
PRACE centers

Tier-1:
National/regional centers

Grid collaboration

Tier-2:
Local centers

Figure 2.4  e-Infrastructure ecosystem.

Knowledge Layer

Sensors  Grids HPC  Systems

Networks U
se

r 
C

om
m

un
iti

es



34    PROVIDING LOCAL SUPPORT TO GLOBAL SCIENCE

ACKNOWLEDGMENTS

The authors would like to thank all the members of EGEE and BalticGrid for 
their enthusiasm and excellent work, which made the EGEE and BalticGrid 
vision a reality. The authors would also like to thank the open source cloud 
developers—Eucalyptus and OpenNebula—making BalticCloud and BGi a 
reality.

REFERENCES

M Assuncao, A Costanzo, and R Buyya. Evaluating the cost-benefit of using cloud 
computing to extend the capacity of clusters. In Proc. of 18th ACM Int’l Symposium 
on High Performance Distributed Computing, pp. 141–150, 2009.

I. Foster and C. Kesselman, editors, The Grid: Blueprint for A New Computing 
Infrastructure. San Francisco, CA: Morgan Kaufmann, 2003.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid. The Int’l Journal of 
High Performance Computing Applications, 15(3):200–222, 2001.

F. Gagliardi, B. Jones, and E. Laure. The EU DataGrid Project: Building and operating 
a large-scale grid infrastructure. In B. D. Martino, J. Dongarra, and A. Hoisie, editors, 
Engineering the Grid: Status and Perspective. Los Angeles, CA: American Scientific 
Publishers, 2006.

M. Lamanna and E. Laure, editors. The EGEE user forum experiences in using grid 
infrastructures. Journal of Grid Computing, 6(1), 2008.

E. Laure, S. Fisher, A. Frohner, et al. Programming the grid with gLite. Computational 
Methods in Science and Technology, 12(1):33–45, 2006.

E. Laure and B. Jones. Enabling Grids for E-sciencE—The EGEE project. In L. Wang, 
W. Jie, and J. Chen, editors, Grid Computing: Infrastructure, Service, and Application, 
Boca Raton, FL: CRC Press, 2009.

D. Nurmi, R. Wolski, C. Grzegorczyk, et al. The eucalyptus open-source cloud-computing 
system. In Proc. of 9th IEEE/ACM International Symposium on Cluster Computing 
and the Grid, pp. 124–131, 2009.

M. Riedel, E. Laure, T. Soddemann, et al. Interoperation of worldwide production 
e-science infrastructures. Concurrency and Computation: Practice and Experience, 
21(8):961–990, 2009.

B. Sotomayor, R. Montero, I. M. Llorente, et al. Capacity leasing in cloud systems using 
the OpenNebula engine. In Proc. of the Cloud Computing and its Applications 2008, 
2008.



Chapter 3
Accelerated Many-Core 

GPU Computing for 
Physics and Astrophysics 

on Three Continents
Rainer Spurzem

National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing, 
China, Astronomisches Rechen-Institut, Zentrum für Astronomie, University of 

Heidelberg, Heidelberg, Germany, and
Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China

35

Peter Berczik

Ingo Berentzen

Wei Ge and Xiaowei Wang

Hsi-Yu Schive

Keigo Nitadori

National Astronomical Observatories of China,  
Chinese Academy of Sciences, Beijing, China, and

Astronomisches Rechen-Institut, Zentrum für Astronomie,  
University of Heidelberg, Heidelberg, Germany

Zentrum für Astronomie, University of Heidelberg, Heidelberg, Germany

Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China

Department of Physics, National Taiwan University, Taibei, Taiwan

RIKEN AICS Institute, Kobe, Japan

Tsuyoshi Hamada
Nagasaki Advanced Computing Center, Nagasaki University, Nagasaki, Japan

José Fiestas
Astronomisches Rechen-Institut, Zentrum für Astronomie, 

University of Heidelberg, Heidelberg, Germany

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski, 
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



36    ACCELERATED MANY-CORE GPU COMPUTING

3.1  INTRODUCTION

Theoretical numerical modeling has become a third pillar of sciences in addi-
tion to theory and experiment (in the case of astrophysics, the experiment is 
mostly substituted by observations). Numerical modeling allows one to 
compare theory with experimental or observational data in unprecedented 
detail, and it also provides theoretical insight into physical processes at work 
in complex systems. Similarly, data processing (e.g., of astrophysical observa-
tions) comprises the use of complex software pipelines to bring raw data into 
a form digestible for observational astronomers and ready for exchange and 
publication; these are, for example, mathematical transformations like Fourier 
analyses of time series or spatial structures, complex template analyses, or huge 
matrix–vector operations. Here, fast access to and transmission of data, too, 
require supercomputing capacities. However, sufficient resolution of multi-
scale physical processes still poses a formidable challenge, such as in the 
examples of few-body correlations in large astrophysical many-body systems 
or in the case of turbulence in physical and astrophysical flows.

We are undergoing a new revolution on parallel processor technologies, and 
a change in parallel programming paradigms, which may help to advance 
current software toward the exaflop scale and to better resolve and understand 
typical multiscale problems. The current revolution in parallel programming 
has been mostly catalyzed by the use of graphical processing units (GPUs) for 
general-purpose computing, but it is not clear whether this will remain the 
case in the future. GPUs have become widely used nowadays to accelerate a 
broad range of applications, including computational physics and astrophysics, 
image/video processing, engineering simulations, and quantum chemistry, just 
to name a few. GPUs are rapidly emerging as a powerful and cost-effective 
platform for high-performance parallel computing. The GPU Technology 
Conference 2010 held by NVIDIA in San Jose in autumn 20101 gave one 
snapshot of the breadth and depth of present-day GPU (super)computing 
applications. Recent GPUs, such as the NVIDIA Fermi C2050 Computing 
Processor, offer 448 processor cores and extremely fast on-chip-memory chip, 
as compared to only four to eight cores on a standard Intel or AMD central 
processing unit (CPU). Groups of cores have access to very fast shared memory 
pieces; a single Fermi C2050 device supports double-precision operations fully 
with a peak speed of 515 gigaflops; in this chapter, we also present results 
obtained from GPU clusters with previous generations of GPU accelerators, 
which have no (Tesla C870) or only very limited (Tesla C1060) double-precision 
support. We circumvented this by emulation of a few critical double-precision 
operations (Nitadori and Makino, 2008). More details can be found in the PhD 
thesis of one of us (K. Nitadori), “New Approaches to High-Performance N-
Body Simulations with High-Order Integrator, New Parallel Algorithm, and 
Efficient Use of SIMD Hardware,” University of Tokyo, in 2009.

1 http://www.nvidia.com/gtc.

http://www.nvidia.com/gtc


INTRODUCTION    37

Scientists are using GPUs since more than 5 years already for scientific 
simulations, but only the invention of CUDA (Akeley et al., 2007; Hwu, 2011) 
as a high-level programming language for GPUs made their computing power 
available to any student or researcher with normal scientific programming 
skills. CUDA is presently limited to GPU devices of NVIDIA, but the open 
source language OpenCL will provide access to any type of many-core accel-
erator through an abstract programming language. Computational physics and 
astrophysics has been a pioneer in using GPUs for high-performance general-
purpose computing (e.g., see the early AstroGPU workshop in Princeton 2007) 
through the information base.2 Astrophysicists had an early start in the field 
through the Gravity Pipe (GRAPE) accelerator boards from Japan from 10 
years ago (Makino et al., 2003; Fukushige et al., 2005). Clusters with accelera-
tor hardware (GRAPE or GPU) have been used for gravitating many-body 
simulations to model the dynamics of galaxies and galactic nuclei with super-
massive black holes (SMBHs) in galactic nuclei (Berczik et al., 2005, 2006; 
Berentzen et al., 2009; Just et al., 2011; Pasetto et al., 2011), in the dynamics 
of dense star clusters (Hamada and Iitaka, 2007; Portegies Zwart et al., 2007; 
Belleman et al., 2008), in gravitational lensing ray shooting problems 
(Thompson et al., 2010), in numerical hydrodynamics with adaptive mesh 
refinement (Wang and Abel, 2009; Schive et al., 2010; Wang et al., 2010a), in 
magnetohydrodynamics (Wong et al., 2009), or fast Fourier transform (FFT) 
(Cui et al., 2009). While it is relatively simple to obtain good performance with 
one or few GPUs relative to the CPU, a new taxonomy of parallel algorithms 
is needed for parallel clusters with many GPUs (Barsdell et al., 2010). Only 
“embarrassingly” parallel codes scale well even for large number of GPUs, 
while in other cases like hydrodynamics or FFT on GPU, the speedup is some-
what limited to 10–50 for the whole application, and this number needs to be 
carefully checked whether it compares the GPU performance with single or 
multicore CPUs. A careful study of the algorithms and their data flow and data 
patterns is useful and has led to significant improvements, for example, for 
particle-based simulations using smoothed particle hydrodynamics (SPH) 
(Berczik et al., 2007; Spurzem et al., 2009) or for FFT (Cui et al., 2009). 
Recently, new GPU implementations of fast-multipole methods (FMMs) have 
been presented and compared to Tree Codes (Yokota and Barba, 2010; Yokota 
et al., 2010). FMM codes have first been presented by Greengard and Rokhlin 
(1987). It is expected that on the path to exascale applications, further—
possibly dramatic—changes in algorithms are required; at present, it is unclear 
whether the current paradigm of heterogeneous computing with a CPU and 
an accelerator device like GPU will remain dominant.

While the use of many-core accelerators is strongly growing in a large 
number of scientific and engineering fields, there are still only few codes able 
to fully harvest the computational power of parallel supercomputers with 
many GPU devices, as they have recently become operational in particular 

2 http://www.astrogpu.org.

http://www.astrogpu.org


38    ACCELERATED MANY-CORE GPU COMPUTING

(but not restricted to) in China. In China, GPU computing is blooming; the 
top and third spots in the list of 500 fastest supercomputers in the world3 are 
now occupied by Chinese GPU clusters, and one of the GPU clusters used for 
results in this chapter is on rank number 28 (Mole-8.5 computer; see next 
discussion and Wang et al., 2010b). In this chapter, we present in some detail 
an astrophysical N-body application for star clusters and galactic nuclei and 
star clusters, which is currently our mostly well-tested and also heavily used 
application. Furthermore, somewhat less detailed, we present other applica-
tions scaling equally very well, such as an adaptive mesh refinement hydrody-
namic code, using (among other parts) an FFT and relaxation methods to solve 
Poisson’s equation, and give some overview on physical and process engineer-
ing simulations.

3.2  ASTROPHYSICAL APPLICATION FOR STAR CLUSTERS AND 
GALACTIC NUCLEI

Dynamical modeling of dense star clusters with and without massive black 
holes poses extraordinary physical and numerical challenges; one of them is 
that gravity cannot be shielded, such as electromagnetic forces in plasmas; 
therefore, long-range interactions go across the entire system and couple non-
linearly with small scales; high-order integration schemes and direct force 
computations for large numbers of particles have to be used to properly 
resolve all physical processes in the system. On small scales, correlations inevi-
tably form already early during the process of star formation in a molecular 
cloud. Such systems are dynamically extremely rich; they exhibit a strong 
sensitivity to initial conditions and regions of phase space with deterministic 
chaos.

After merging two galaxies in the course of cosmological structure forma-
tion, we start our simulations with two SMBHs embedded in a dense star 
cluster, separated by some 1000 pc (1 pc, 1 parsec, about 3.26 light years, or 
3.0857·1018 cm). This is a typical separation still accessible to astrophysical 
observations (Komossa et al., 2003). Nearly every galaxy harbors an SMBH, 
and galaxies build up from small to large ones in a hierarchical manner 
through mergers following close gravitational encounters. However, the 
number of binary black holes observed is relatively small, so there should be 
some mechanism by which they get close enough to each other to coalesce 
under emission of gravitational wave emission. Direct numerical simulations 
of Einstein’s field equations start usually at a black hole separation in the order 
of 10–50 Schwarzschild radii, which is, for an example of a 1 million solar mass 
black hole (similar to the one in our own galactic center), about 10−5 pc. 
Therefore, in order to obtain a merger, about eight orders of magnitude in 
separation need to be bridged. In our recent models, we follow in one coherent 

3 http://www.top500.org.

http://www.top500.org


AsTROPhYsICAL APPLICATION fOR sTAR CLUsTERs AND GALACTIC NUCLEI    39

direct N-body simulation how interactions with stars of a surrounding nuclear 
star cluster, combined with the onset of relativistic effects, lead to a black hole 
coalescence in galactic nuclei after an astrophysically modest time of order 108 
years (Berentzen et al., 2009; Preto et al., 2011). Corresponding to the multi-
scale nature of the problem in space, we have a large range of timescales to 
be covered accurately and efficiently in the simulation. Orbital times of SMBHs 
in galactic nuclei after galactic mergers are of the order of several million 
years; in the interaction phase with single stars, the orbital time of a gravita-
tionally bound supermassive binary black hole goes down to some 100 years—
at this moment, there is a first chance to detect its gravitational wave emission 
through their influence on pulsar timing (Lee et al., 2011). Energy loss due to 
Newtonian interactions with field stars interplays with energy loss due to 
gravitational radiation emission; the latter becomes dominant in the final 
phase (at smaller separations) when the black hole binary enters the wave 
band of the planned laser interferometer space antenna (LISA4), where one 
reaches 0.01-Hz orbital frequency. Similarly, in a globular star cluster, times-
cales can vary between a million years (for an orbit time in the cluster) to 
hours (orbital time of the most compact binaries). The nature of gravity favors 
such strong structuring properties since there is no global dynamic equilib-
rium. Gravitationally bound subsystems (binaries) tend to exchange energy 
with the surrounding stellar system in a way that increases their binding 
energy, thus moving further away from a global equilibrium state. This behav-
ior can be understood in terms of self-gravitating gas spheres undergoing 
gravothermal catastrophe (Lynden-Bell and Wood, 1968), but it occurs in real 
star clusters on all scales. Such kind of stellar systems, sometimes called dense 
or gravothermal stellar systems, demands special high-accuracy integrators 
due to secular instability, deterministic chaos, and strong multiscale behavior. 
Direct high-order N-body integrators for this type of astrophysical problem 
have been developed by Aarseth (see for reference Aarseth, 1999b, 2003). 
They employ fourth-order time integration using a Hermite scheme, hierarchi-
cally blocked individual particle time steps, an Ahmad–Cohen neighbor 
scheme, and regularization of close, few-body systems.

Direct N-Body Codes in astrophysical applications for galactic nuclei, galac-
tic dynamics, and star cluster dynamics usually have a kernel in which direct 
particle–particle forces are evaluated. Gravity as a monopole force cannot be 
shielded on large distances, so astrophysical structures develop high-density 
contrasts. High-density regions created by gravitational collapse coexist with 
low-density fields, as is known from structure formation in the universe or the 
turbulent structure of the interstellar medium. A high-order time integrator 
in connection with individual, hierarchically blocked time steps for particles 
in a direct N-body simulation provides the best compromise between accuracy, 
efficiency, and scalability (Makino and Hut, 1988; Spurzem, 1999; Aarseth, 
1999a, 1999b; Harfst et al., 2007). With GPU hardware, up to a few million 

4 http://lisa.nasa.gov/.

http://lisa.nasa.gov/


40    ACCELERATED MANY-CORE GPU COMPUTING

bodies could be reached for our models (Berczik et al., 2005, 2006; Gualandris 
and Merritt, 2008). Note that while Greengard and Rokhlin (1987) already 
mentioned that their algorithm can be used to compute gravitational forces 
between particles to high accuracy, Makino and Hut (1988) found that the 
self-adaptive hierarchical time-step structure inherited from Aarseth’s codes 
improves the performance for spatially structured systems by C (N)it means 
that, at least, for astrophysical applications with high-density contrast, FMM 
is not a priori more efficient than direct N-body (which sometimes is called 
“brute force,” but that should only be used if a shared time step is used, which 
is not the case in our codes). One could explain this result by comparing the 
efficient spatial decomposition of forces (in FMM, using a simple shared time 
step) with the equally efficient temporal decomposition (in direct N-body, 
using a simple spatial force calculation).

On the other hand, cosmological N-body simulations use thousand times 
more particles (billions, order of 109), at the price of allowing less accuracy for 
the gravitational force evaluations, either through the use of a hierarchical 
decomposition of particle forces in time (Ahmad and Cohen, 1973; Makino 
and Aarseth, 1992; Aarseth, 2003) or in space (Barnes and Hut, 1986; Makino, 
2004; Springel, 2005). Another possibility is the use of fast-multipole algo-
rithms (Greengard and Rokhlin, 1987; Dehnen, 2000, 2002; Yokota and Barba, 
2010; Yokota et al., 2010) or particle–mesh (PM) schemes (Hockney and 
Eastwood, 1988; Fellhauer et al., 2000), which use FFT for their Poisson solver. 
PM schemes are the fastest for large systems, but their resolution is limited to 
the grid cell size. Adaptive codes use direct particle–particle forces for close 
interactions below grid resolution (Couchman et al., 1995; Pearce and 
Couchman, 1997). But for astrophysical systems with high-density contrasts, 
tree codes are more efficient. Recent codes for massively parallel supercom-
puters try to provide adaptive schemes using both tree and PM, such as the 
well-known GADGET and TreePM codes (Xu, 1995; Springel, 2005; Yoshikawa 
and Fukushige, 2005; Ishiyama et al., 2009).

3.3  HARDWARE

We present results obtained from GPU clusters using NVIDIA Tesla C1060 
cards in Beijing, China (Laohu cluster with 85 Dual Intel Xeon nodes and with 
170 GPUs); NVIDIA Fermi C2050 cards also in Beijing, China (Mole-8.5 
cluster with 372 dual Xeon nodes, most of which have 6 GPUs, delivering in 
total 2000 Fermi Tesla C2050 GPUs); in Heidelberg, Germany, using NVIDIA 
Tesla C870 (pre-Fermi single-precision-only generation) cards (Kolob cluster 
with 40 Dual Intel Xeon nodes and with 40 GPUs.); and Berkeley at NERSC/
LBNL using again the NVIDIA Fermi Tesla C2050 cards (Dirac cluster with 
40 GPUs) (Fig. 3.1).

In Germany, at Heidelberg University, our teams have operated a many-
core accelerated cluster using the GRAPE hardware for many years (Spurzem 



sOfTwARE    41

et al., 2004, 2007, 2008; Harfst et al., 2007). We have in the meantime migrated 
from GRAPE to GPU (and also partly FPGA) clusters (Spurzem et al., 2009, 
2010, 2011), and part of our team is now based at the National Astronomical 
Observatories of China (NAOC) of the Chinese Academy of Sciences (CAS) 
in Beijing. NAOC is part of a GPU cluster network covering 10 institutions of 
CAS, aiming for high-performance scientific applications in a cross-disciplinary 
way. The top-level cluster in this network is the recently installed Mole-8.5 
cluster at the Institute of Process Engineering of the Chinese Academy of 
Sciences (IPE/CAS) in Beijing (2-petaflop single-precision peak), from which 
we also show some preliminary benchmarks. The entire CAS GPU cluster 
network has a total capacity of nearly 5-petaflop single-precision peak. In 
China, GPU computing is blooming; the top and third spots in the list of 500 
fastest supercomputers in the world5 are now occupied by Chinese GPU clus-
ters. The top system in the CAS GPU cluster network is currently number 28 
(Mole-8.5 at IPE). Research and teaching in CAS institutions is focused on 
broadening the computational science base to use the clusters for supercom-
puting in basic and applied sciences.

3.4  SOFTWARE

The test code that we use for benchmarking on our clusters is a direct N-body 
simulation code for astrophysics, using a high-order Hermite integration 
scheme and individual block time steps (the code supports time integration of 

Figure 3.1  Left: NAOC GPU cluster in Beijing, 85 nodes with 170 NVIDIA Tesla C1060 GPUs, 
170-teraflop hardware peak speed, installed in 2010. Right: frontier Kolob cluster at ZITI 
Mannheim, 40 nodes with 40 NVIDIA Tesla C870 GPU accelerators, 17-teraflop hardware peak 
speed, installed in 2008.

5 http://www.top500.org.

http://www.top500.org


42    ACCELERATED MANY-CORE GPU COMPUTING

particle orbits with fourth-, sixth, and eighth-order schemes). The code is called 
φGPU; it has been developed from our earlier published versions φGRAPE 
(Harfst et al., 2007). It is parallelized using Message Passing Interface (MPI) 
and, on each node, using many cores of the special hardware. The code was 
mainly developed and tested by K. Nitadori and P. Berczik (see also Hamada 
and Iitaka, 2007) and is based on an earlier version for GRAPE clusters 
(Harfst et al., 2007). The code is written in C++ and is based on Nitadori and 
Makino (2008) an earlier CPU serial code (yebisu).

We used and tested the present version of the φGPU code only with the 
recent GNU compilers (version 4.x). For all results shown here, we used a 
Plummer-type gravitational potential softening, ε = 10−4, in units of the virial 
radius. More details will be published in an upcoming publication (Berczik  
et al., 2011).

The MPI parallelization was carried out in the same “j” particle paralleliza-
tion mode as in the earlier φGRAPE code (Harfst et al., 2007). The particles 
were divided equally between the working nodes and in each node, we calcu-
lated only the fractional forces for the active “i” particles at the current time 
step. Due to the hierarchical block time-step scheme, the number Nact of active 
particles (due for a new force computation at a given time level) is usually 
small compared to the total particle number N, but its actual value can vary 
from 1 . . . N. We obtained the full forces from all the particles acting on the 
active particles after using the global MPI_SUM communication routines.

We used native GPU support and direct code access to the GPU with only 
CUDA. Recently, we used the latest CUDA 3.2 (but the code was developed 
and working also with the “older” CUDA compilers and libraries). Multi-GPU 
support is achieved through MPI parallelization; each MPI process uses only 
a single GPU, but we can start two MPI processes per node (to use effectively, 
e.g., the dual quad core CPUs and the two GPUs in the NAOC cluster) and 
in this case each, MPI process uses its own GPU inside the node. Communication 
always (even for the processes inside one node) works via MPI. We do not use 
any of the possible OMP (multithread) features of recent gcc 4.x compilers 
inside one node.

3.5  RESULTS OF BENCHMARKS

Figures 3.2 and 3.3 show results of our benchmarks. In the case of Laohu, we 
use maximum 164 GPU cards (three nodes; i.e., six cards were down during 
the test period). Here, the largest performance was reached for 6 million par-
ticles, with 51.2 teraflops in total sustained speed for our application code, in 
an astrophysical run of a Plummer star cluster model, simulating one physical 
time unit (about one-third of the orbital time at the half-mass radius). Based 
on these results, we see that we get a sustained speed for 1 NVIDIA Tesla 
C1060 GPU card of 360 gigaflops (i.e., about one-third of the theoretical hard-
ware peak speed of 1 teraflop). Equivalently, for the smaller and older Kolob 





44    ACCELERATED MANY-CORE GPU COMPUTING

cluster with 40 NVIDIA Tesla C870 GPUs in Germany, we obtain 6.5 teraflops 
(with 4 million particles). This is 160 gigaflops per card.

On the new clusters Dirac and Mole-8.5, where we used the NVIDIA Fermi 
Tesla C2050 cards, we get the maximum performance of 550 gigaflops per card. 
We achieve the absolute record in the performance on a Mole-8.5 cluster when 
we run our test simulation (even for a relatively “low” particle number—2 
million) on 512 nodes and get over the 130-teraflop total performance. In 
principle, for a larger particle number (in the order of 10 million), we see  
that the maximum performance that we can get on the whole cluster 
(on ≈ 2000 GPUs) is around 0.4 petaflop.

We have presented exemplary implementations of direct gravitating N-
body simulations and an adaptive mesh hydrodynamics code with self-gravity 
(Schive et al., 2010) using large GPU clusters in China and elsewhere. The 
overall parallelization efficiency of our codes is very good. It is about 30% of 
the GPU peak speed in Figure 3.2 for the embarrassingly parallel direct N-
body code and still significant (in the order of 20–40 speedups for each GPU) 
for adaptive mesh hydrodynamic simulations. The larger N-body simulations 
(several million particles) show nearly ideal strong scaling (linear relation 
between speed and number of GPUs) up to our present maximum number of 
nearly 170 GPUs—no strong sign of a turnover yet due to communication or 
other latencies. Therefore, we are currently testing the code implementation 
on much larger GPU clusters, such as the Mole-8.5 of IPE/CAS.

The wall clock time T needed for our particle-based algorithm to advance 
the simulation by a certain physical time (usually one crossing time units) 
integration interval scales as

 T T T T Thost GPU comm MPI= + + + ,  (3.1)

where the components of T are (from left to right) the computing time spent 
on the host, on the GPU, the communication time to send data between the 
host and GPU, and the communication time for MPI data exchange between 
the nodes. In our present implementation, all components are blocking, so 
there is no hiding of communication. This will be improved in further code 
versions, but for now, it eases profiling (Table 3.1).

In the case of the φGPU code (as in the other direct NBODY codes dis-
cussed next), we used the blocked hierarchical individual time-step scheme 
(HITS) and a Hermite high-order time integration scheme of at least the 
fourth order for the integration of the equation of motions for all particles 
(Makino and Aarseth, 1992). In the case of HITS in every individual time steps, 
we integrate the motion only for s particles, a number that is usually much less 
compared to the total number of particles N. Its average value 〈s〉 depends on 
the details of the algorithm and on the particle configuration integrated. 
According to a simple theoretical estimate, it is 〈s〉 ∝ N2/3 (Makino, 1991), but 
the real value of the exponent deviates from two-thirds, depending on the 
initial model and details of the time-step choice (Makino and Hut, 1988).



REsULTs Of BENChMARKs    45

We use a detailed timing model for the determination of the wall clock time 
needed for different components of our code on CPU and GPU, which is then 
fitted to the measured timing data. Its full definition is given in Table 3.2.

In practice, we see that only three terms play any relevant role to under-
stand the strong and weak scaling behavior of our code. These are the force 
computation time (on GPU) TGPU and the message passing communication 
time TMPI, within which we can distinguish a bandwidth-dependent part (scaling 
as s log(NGPU)) and a latency-dependent part (scaling as τlat log(NGPU)); the 
latency is only relevant for a downturn of efficiency for strong scaling at a 
relatively large NGPU. Starting in the strong scaling curves from the dominant 
term at a small NGPU, there is a linearly rising part, as one can see, in all curves 
in Figures 3.2–3.4 (most clearly in Fig. 3.4), which corresponds only to the force 
computation on GPU, while the turnover to a flat curve is dominated by the 
MPI communication time between the computing nodes, TMPI.

To find a model for our measurements, we use the ansatz,

 P T= ( ) ,total number of floating point operations /  (3.2)

where T is the computational wall clock time needed. For one block step, the 
total number of floating point operations is γ〈s〉N, where γ defines how many 

TABLE 3.1  Properties of the Fermi GPU Cluster at the Institute of Process 
Engineering of the Chinese Academy of Sciences (IPE/CAS)

Data of the Mole-8.5 System

Item Quantity

Peak performance single precision 2 petaflops
Peak performance double precision 1 petaflop
Linpack sustained performance 207.3 teraflops
Megaflops per watt 431
Number of nodes/number of GPUs (type) 372/2000 (Fermi Tesla C2050)
Total memory RAM 17.8 terabytes
Total memory VRAM 6.5 terabytes
Total hard disk 720 terabytes
Management communication H3C Gigabit Ethernet
Message passing communication Mellanox InfiniBand Quad Data Rate
Occupied area 150 m2
Weight 12.6 tons
Max power 600 kW (computing)

200 kW (cooling)
Operating system CentOS 5.4, PBS
Monitor Ganglia, GPU monitoring
Languages C, C++;, CUDA

This system is the largest GPU cluster in Beijing, the third Chinese cluster, with rank 28 in the worldwide 
Top500 list (as of November 2010). It has been used for some of our N-body benchmarks, especially for 
the timing model, and by the physics simulations at IPE. Note that it has a relatively large number of 
GPUs per node, but our communication performance was not significantly affected (see comparison plots 
with Dirac cluster in Berkeley, which has only one GPU per node).



46    ACCELERATED MANY-CORE GPU COMPUTING

Figure  3.4  Left: The Mole-8.5 Cluster at the Institute of Process Engineering in Beijing. It 
consists of 372 nodes, most with 6 fermi Tesla C2050 GPUs. Right: single node of Mole-8.5 
system (courtesy of IPE, photos by Xianfeng he).

TABLE 3.2  Breaking Down the Computational Tasks in A Parallel Direct N-Body Code 
with Individual Hierarchical Block Time Steps

Components in Our Timing Model for Direct N-Body Code

Task Expected Scaling Timing Variable

Active particle determination C(s log[s]) Thost

All particle prediction C(N/NGPU) Thost

“j” part. send. to GPU C(N/NGPU) Tcomm

“i” part. send. to GPU C(s) Tcomm

Force computation on GPU C(Ns/NGPU) TGPU

Receive the force from GPU C(s) Tcomm

MPI global communication C((τlat +; s)log(NGPU)) TMPI

Correction/advancing “i” particle C(s) Thost

At every block time-step level, we denote s ≤ N particles, which should be advanced by the high-order 
corrector as active or “i” particles, while the field particles, which exert forces on the i particles to be 
computed, are denoted as “j” particles. Note that the number of j particles in our present code is always N 
(full particle number), but in more advanced codes like NBODY6 discussed next, the Ahmad–Cohen 
neighbor scheme uses a much smaller number of j particles for the more frequent neighbor force 
calculation. We also have timing components for low-order prediction of all j particles and distinguish 
communication of data from host to GPU and return, and through the MPI message passing network.



REsULTs Of BENChMARKs    47

floating point operations our particular Hermite scheme requires per particle 
per step, and we have

 P
N s
T

N s
N s N s N

s
s

= =
+ +( ) ( )

γ γ
α β τ/ log

,
gpu lat gpu

 (3.3)

where Ts is the computing time needed for one average block step in time 
(advancing 〈s〉 particles). The reader with interest in more detail how this 
formula can be theoretically derived for general-purpose parallel computers 
is referred to Dorband et al. (2003). α, β, and τlat are hardware time constants 
for the floating point calculation on GPU, for the bandwidth of the intercon-
nect hardware used for message passing and its latency, respectively.

Our timing measurements are done for an integration over one physical 
time unit in normalized units (t = 1, which is equivalent to approximately one-
third of a particle’s orbital crossing time at the half-mass radius), so it is more 
convenient to multiply the numerator and denominator of Equation 3.3 with 
the average number 〈n〉 of steps required for an integration over a physical 
timescale t; it is 〈n〉 ∝ t/〈dt〉, where 〈dt〉 is the average individual time step. In 
a simple theoretical model, our code should asymptotically scale with N2, so 
we would expect N〈s〉〈n〉 ∝ N2. However, our measurements deliver a slightly 
less favorable number 〈s〉〈n〉 ∝ N1+x, with x = 0.31, a value in accord with the 
results of Makino and Hut (1988). Hence, we get for the integration over one 
time unit

 P
N

N N N N
s

x

x x
≈

+ +( ) ( )
+

+ +

γ
α β τ

2

2 1/ log
.

gpu lat gpu

 (3.4)

The parameter x = 0.31 is a particular result for our case of the sixth-order 
HITS and the particular initial model used for the N-body system, Plummer’s 
model as in Makino and Hut (1988). x is empirically determined from our 
timing measurements as shown in Figure 3.5. The parameters α, β, γ, and τlat 
can be determined as well for each particular hardware used. The timing 
formula can then be used to approximate our code calculation “speed” for any 
other number of particles, GPUs, or different hardware parameters. For 
example, on the Mole-8.5 system, we see that for N = 10 m particles, if we are 
using 2000 GPU cards on the system, we expect to get ≈ 390 teraflops (compare 
with Fig. 3.5). If we use our scaling formula for the much higher node-to-node 
bandwidth of the Tianhe-1 system at Tianjin Supercomputing Center (this is 
the number one supercomputer according to the Top500 list of November 
2010, with 7000 NVIDIA Fermi Tesla GPUs and 160 gigabit/s node-to-node 
bandwidth), we can possibly reach a sustained performance on the order of 
petaflops. This is the subject of future research.

To our knowledge, the direct N-body simulation with 6 million bodies in 
the framework of a so-called Aarseth style code (Hermite scheme, sixth order, 
hierarchical block time step, integrating an astrophysically relevant Plummer 



48    ACCELERATED MANY-CORE GPU COMPUTING

model with a core–halo structure in density for a certain physical time) is the 
largest of such simulations that exists so far. However, the presently used 
parallel MPI-CUDA GPU code φGPU is on the algorithmic level of NBODY1 
(Aarseth, 1999b); though it is already strongly used in production, useful fea-
tures such as regularization of few-body encounters and an Ahmad–Cohen 
neighbor scheme (Ahmad and Cohen, 1973) are not yet implemented. Only 
with those the code would be equivalent to NBODY6, which is the most effi-
cient code for single workstations (Aarseth, 1999b, 2003), eventually with 
acceleration on a single node by one or two GPUs (work by Aarseth & 
Nitadori; see NBODY66). NBODY6++ (Spurzem, 1999) is a massively parallel 
code corresponding to NBODY6 for general-purpose parallel computers. An 
NBODY6++ variant using many GPUs in a cluster is work in progress. Such 
a code could potentially reach the same physical integration time (with same 

6 http://www.ast.cam.ac.uk/ sverre/web/pages/nbody.htm.

Figure 3.5  strong scaling for different problem sizes on a Mole-8.5 cluster. Each line corre-
sponds to a different problem size (particle number), which is given in the key. The sequence 
of lines in the plot corresponds to the sequence of lines in the key (from top to bottom). Thicker 
lines with dots or symbols are obtained from our timing measurements. Thinner lines show the 
extrapolation for larger NGPU and for larger N according to our timing model. As one can see, 
we reach 550 gigaflops per GPU card, in total on 512 GPUs about 280-teraflop sustained code 
performance for our code. An extrapolation to 2000 GPUs shows we can reach 390 teraflops 
on Mole-8.5 for 10 million particles.

 0.1

1.0

 10.0

 25.0

 50.0

 100.0

 200.0

 500.0

 1000.0

1 2 4 8 16 32 64 128 256 512 1024 2048

S
pe

ed
 (

T
flo

ps
)

phi-GPU6 on “Mole-8.5” with Tesla C2050

10M

 8M

 6M

 4M

 2M

    1M

  512K

  256K

  128K

   64K

   32K

   16K

N = 8K

Processors—NP (GPU) 

≈550 (Gflops/GPU)•NP

http://www.ast.cam.ac.uk/<223C>sverre/web/pages/nbody.htm


PhYsICAL MULTIsCALE DIsCRETE sIMULATION AT IPE    49

accuracy) using only one order of magnitude less floating point operations. 
The NBODY6 codes are algorithmically more efficient than φGPU or 
NBODY1 because they use an Ahmad–Cohen neighbor scheme (Ahmad and 
Cohen, 1973), which reduces the total number of full force calculations needed 
again (in addition to the individual hierarchical time-step scheme); that is, the 
proportionality factor in front of the asymptotic complexity N2 is further 
reduced.

We have shown that our GPU clusters for the very favorable direct N-body 
application reach about one-third of the theoretical peak speed sustained for 
a real application code with individual block time steps. In the future, we will 
use larger Fermi-based GPU clusters such as the Mole-8.5 cluster at the IPE/
CAS in Beijing and more efficient variants of our direct N-body algorithms; 
details of benchmarks and science results, and the requirements to reach exas-
cale performance, will be published elsewhere.

3.6  ADAPTIVE MESH REFINEMENT HYDROSIMULATIONS

The team at National Taiwan University has developed an adaptive mesh 
refinement (AMR) code named GAMER to solve astrophysical hydrodynamic 
problems (Schive et al., 2010). The AMR implementation is based on construct-
ing a hierarchy of grid patches with an oct-tree data structure. The code adopts 
a hybrid CPU/GPU model in which both hydrodynamic and gravity solvers 
are implemented into the GPU and the AMR data structure is manipulated 
by the CPU. For strong scaling, considerable speedup is demonstrated for up 
to 128 GPUs, with excellent performance shown in Figures 3.6 and 3.7.

More recently, the GAMER code is further optimized for supporting 
several directionally unsplit hydrodynamic schemes and the OpenMP paral-
lelization (Schive et al., accepted). By integrating hybrid MPI/OpenMP paral-
lelization with GPU computing, the code can fully exploit the computing 
power in a heterogeneous CPU/GPU system. The Figure 3.8 shows the per-
formance benchmark on the Dirac cluster at NERSC/LBNL. The maximum 
speedups achieved in the 32-GPU run are 71.4 and 18.3 as compared to the 
CPU-only 32-single-core and 32-quad-core performances, respectively. Note 
that the 32-GPU speedup drops about 12% mainly due to the MPI commu-
nication and the relatively lower spatial resolution (and hence higher surface/
volume ratio) compared to that of the benchmark performed on the Beijing 
Laohu cluster. This issue can be alleviated by increasing the spatial resolution 
and also by overlapping communication with computation.

3.7  PHYSICAL MULTISCALE DISCRETE SIMULATION AT IPE

Discrete simulation is, in a sense, more fundamental and straightforward as 
compared with other numerical methods based on continuum models since 





PhYsICAL MULTIsCALE DIsCRETE sIMULATION AT IPE    51

the world is naturally composed of particles at very small and large scales, such 
as fundamental particles, atoms, and molecules on one hand and stars and 
galaxies on the other hand. However, continuum methods are traditionally 
considered more efficient as each element in these methods presents a statisti-
cally enough number of particles. This faith has changed in recent years with 
the dramatic development of parallel computing. It turns out that although 
the peak performance of (parallel) supercomputers is increasing at a speed 
higher than Moore’s law, the sustainable performance of most numerical soft-
wares is far behind it, sometimes only several percent of it, and the percentage 
decreases with system scale inevitably. The complex data dependence and 
hence communication overheads inherent for most continuum-based numeri-
cal methods present a major cause of this inefficiency and poor scalability. In 
comparison, discrete simulation methods, such as molecular dynamic (MD) 
simulations, dissipative particle dynamics (DPD), lattice Boltzmann method 
(LBM), discrete particle methods (DEM) and SPH, and so on, heavily rely on 
local interactions, and their algorithms are inherently parallel. In the final 
analysis, this is rooted in the physical parallelism of the physical model behind 
these methods. It is worthy to mention that coarse-grained particles such DPD 
and PPM (Ge and Li, 2003a) are now capable of simulating apparently con-
tinuous systems at a computational cost fairly comparable to continuum 
methods, and macroscale particle methods such SPH and MaPPM (Ge and Li, 

Figure 3.8  Performance speedup of the latest GAMER code of 2011, measured on the Dirac 
cluster at NERsC/LBNL. The root-level resolution is 2563 and only four refinement levels are 
used. The GPU performance is compared to that of CPU runs without OpenMP and GPU 
acceleration. several optimizations are implemented in the fully optimized code, including the 
asynchronous memory copy, the concurrent execution between CPU and GPU, and the 
OpenMP parallelization. The quad-core CPU performance is also shown for comparison.

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 4 8 16 32

S
pe

ed
up

Number of GPUs (CPUs)

Quad-core CPU
Unoptimized GPU
Optimized GPU
Ideal



52    ACCELERATED MANY-CORE GPU COMPUTING

2001, 2003b) can also be understood as a special kind of numerical discretizing 
of continuum models.

In recent years, with the flourish of many-core computing technology, such 
as the use of GPUs (graphic processing unit) for scientific and engineering 
computing, this virtue of discrete methods is best demonstrated and further 
explored. A general model for many-core computing of discrete methods is 
“divide and conquer.” A naive implementation is to decompose the computed 
domain into many subdomains, which are then assigned to different processors 
for parallel computing of particle–particle interactions and movements. The 
assignment changes as the physical location of transfer from one subdomain 
to another. Communications, therefore, only occur at neighboring subdomains. 
Most practical implementations, however, use more advanced techniques, such 
as dynamic load balance and monotonic Lagrangian grid (Lambrakos and 
Boris, 1987), to minimize the waiting and communication among different 
processors. Within each processor, each pair of particle–particle interactions 
and each particle-state updating are also parallel in principle, which can be 
carried out by each core of the processors. Currently, most many-core pro-
cesses like GPUs are still working as an external device to the CPU, so data 
copy between the main memory and the device memory is still necessary, and 
the communication between many-core processors across different computing 
nodes is routed by CPUs. A combined CPU–GPU computing mode is under 
development, which may further reduce this communication overhead.

Some of the discrete simulation work carried out at IPE/CAS using GPUs 
has been introduced in a Chinese monograph (Chen et al., 2009), and in some 
recent publications, they have covered MD simulation of multiphase micro- 
and nanoflow (Chen et al., 2008), polymer crystallization (Xu et al., 2009) and 
silicon crystal, computational fluid dynamics (CFD) simulation of cavity flow 
(Li et al., 2009) and gas–solid suspension, and so on. All the simulations intro-
duced earlier have been carried out on the multiscale high-performance com-
puting (HPC) systems established at IPE. The first system, Mole-9.7, put into 
use on February 18, 2008, consists of 120 HP xw8600 workstations, each 
installed with two NVIDIA Tesla C870 GPGPU cards and two Intel Xeon 
5430 CPUs, and reached a peak performance of 120 teraflops in a single preci-
sion. The system is connected by an all-to-all switch together with a 2-D torus 
topology of Gigabit Ethernet, which speeds up adjacent communication domi-
nated in discrete simulations. Its successor, Mole-8.7, is announced on April 
20, 2009 as the first supercomputer of China with 1.0-petaflop peak perfor-
mance in a single precision (Chen et al., 2009). Both NVIDIA and AMD GPU 
are integrated in this system. The designing philosophy is the consistency 
among hardware, software, and the problems to be solved, based on the mul-
tiscale method and discrete simulation approaches developed at IPE. The 
system has nearly 400 nodes connected by Gigabit Ethernet and DDR 
InfiniBand network.

Then, in 2010, IPE built the new system, Mole-8.5, which is the first GPU 
cluster using Fermi in the world. With the powerful computational resource 



DIsCUssION AND CONCLUsIONs    53

of Mole-8.5 and the multiscale software developed by IPE, several large-scale 
applications have been successfully run on Mole-8.5:

• An MD simulation of dynamic structure of a whole H1N1 influenza virion 
in solution is simulated at the atomic level for the first time. The simula-
tion system includes totally 300 million atoms in a periodic cube with an 
edge length of 148.5 nm. Using 288 nodes with 1728 Fermi Tesla C2050, 
the simulation proceeds at 770 ps/day with an integration time step of 1fs 
(Xu et al., 2010b).

• A quasi-real-time DEM simulation of an industrial rotating drum, the size 
of which is 13.5 m long by 1.5 m in diameter, is performed. The simulation 
system contains about 9.6 million particles. Nearly 1/11 real speed is 
achieved using 270 GPUs together with online visualization (Xu et al., 
2010a).

• Large-scale direct numerical simulations of gas–solid fluidization have 
been carried out, with systems of about 1 million solid particles and 1 
billion fluid particles in 2-D using 576 GPUs, and of about 100,000 solid 
particle and 0.4 billion fluid particles in 3-D using 224 GPUs. The largest 
system we have run utilized 1728 GPUs with an estimated performance 
of 33 teraflops in double precision (Xiong et al., 2010).

• A large-scale parallel MD simulation of single-crystalline silicon 
nanowire containing about 1.5 billion silicon atoms with many-body 
potential is conducted using 1500-GPU cards with a performance of about 
227 teraflops in single precision (Hou and Ge, 2011).

3.8  DISCUSSION AND CONCLUSIONS

We have presented exemplary implementations of parallel codes using many 
GPUs as accelerators, so combining message passing parallelization with 
many-core parallelization, and have discussed their benchmarks using up to 
512 Fermi Tesla GPUs in parallel, mostly on the Mole-8.5 hardware of the 
IPE/CAS in Beijing, but also on the Laohu Tesla C1070 cluster of the National 
Astronomical Observatories of CAS in Beijing and smaller clusters in Germany 
and in the United States. For direct high-accuracy gravitating N-body simula-
tions, we discussed how self-gravity, because it cannot be shielded, generates 
inevitably strong multiscale structures in space and time, spanning many orders 
of magnitude. This requires special codes, which nevertheless scale with a high 
efficiency on GPU clusters. Also, we present an adaptive mesh hydrodynamic 
code including a gravity solver using FFT and relaxation methods and physical 
algorithms used for multiscale flows with particles. So, our codes are examples 
that it is possible to reach the subpetaflop scale in sustained speed for realistic 
application software with large GPU clusters. Whether our programming 
models can be scaled up for future hardware and the exaflop scale, however, 
remains yet to be studied.



54    ACCELERATED MANY-CORE GPU COMPUTING

ACKNOWLEDGMENTS

CAS has supported this work by a Visiting Professorship for Senior 
International Scientists, Grant Number 2009S1-5 (RS), and NAOC/CAS 
through the Silk Road Project (RS, PB, JF partly). IPE/CAS and the High 
Performance Computing Center at NAOC/CAS acknowledge financial support 
by the Ministry of Finance under the grant ZDYZ2008-2 for the supercomput-
ers Mole-8.5 and Laohu, used for simulations of this chapter. RS and PB want 
to thank Xue Suijian for valuable advice and support. We thank the computer 
system support team at NAOC (Gao Wei and Cui Chenzhou) for their support 
to run the Laohu cluster.

We gratefully acknowledge computing time on the Dirac cluster of NERSC/
LBNL in Berkeley and thank Hemant Shukla, John Shalf, and Horst Simon 
for providing the access to this cluster and for cooperation in the International 
Center of Computational Science,7 as well as the helpful cooperation of 
Guillermo Marcus, Andreas Kugel, Reinhard Männer, Robi Banerjee, and Ralf 
Klessen in the GRACE and Frontier Projects at the University of Heidelberg 
(at ZITI and ITA/ZAH).

Simulations were also performed on the GRACE supercomputer (grants 
I/80 041-043 and I/81 396 of the Volkswagen Foundation and 823.219-439/30 
and /36 of the Ministry of Science, Research and the Arts of Baden-
Württemberg) and the Kolob cluster funded by the Frontier Project at the 
University of Heidelberg. PB acknowledges the special support by the NAS 
Ukraine under the Main Astronomical Observatory GRAPE/GRID comput-
ing cluster project.8 PB’s studies are also partially supported by the program 
Cosmomicrophysics of NAS Ukraine. The Kolob cluster and IB have been 
funded by the excellence funds of the University of Heidelberg in the Frontier 
scheme. Though our parallel GPU code has not yet reached the perfection of 
standard NBODY6, we want to thank Sverre Aarseth for providing his  
codes freely and for teaching many generations of students how to use it and 
adapt it to new problems. This has helped and guided the authors in many 
respects.

REFERENCES

S. J. Aarseth. Star cluster simulations: The state of the art. Celestial Mechanics and 
Dynamical Astronomy, 73:127–137, 1999a.

S. J. Aarseth. From NBODY1 to NBODY6: The growth of an industry. Publications of 
the Astronomical Society of the Pacific, 111:1333–1346, 1999b.

S. J. Aarseth. Gravitational N-Body Simulations. Cambridge, UK: Cambridge University 
Press, 2003.

8 http://www.mao.kiev.ua/golowood/eng/.

7 http://iccs.lbl.gov.

http://www.mao.kiev.ua/golowood/eng/
http://iccs.lbl.gov


REfERENCEs    55

A. Ahmad and L. Cohen. A numerical integration scheme for the N-body gravitational 
problem. Journal of Computational Physics, 12:389–402, 1973.

K. Akeley, H. Nguyen, and NVIDIA. GPU Gems 3. Addison-Wesley Professional, 
2007.

J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Nature, 
324:446–449, 1986.

B. R. Barsdell, D. G. Barnes, and C. J. Fluke. Advanced architectures for astrophysical 
supercomputing. ArXiv e-prints, 2010.

R. G. Belleman, J. Bédorf, and S. F. Portegies Zwart. High performance direct gravita-
tional N-body simulations on graphics processing units II: An implementation in 
CUDA. New Astronomy, 13:103–112, 2008.

P. Berczik, D. Merritt, and R. Spurzem. Long-term evolution of massive black hole 
binaries. II. Binary evolution in low-density galaxies. The Astrophysical Journal, 
633:680–687, 2005.

P. Berczik, D. Merritt, R. Spurzem, et al. Efficient merger of binary supermassive black 
holes in nonaxisymmetric galaxies. The Astrophysical Journal Letters, 642:L21–L24, 
2006.

P. Berczik, N. Nakasato, I. Berentzen, et al. Special, hardware accelerated, parallel SPH 
code for galaxy evolution. In SPHERIC—Smoothed particle hydrodynamics euro-
pean research interest community, 2007.

P. Berczik, K. Nitadori, T. Hamada, et al. The parallel GPU N-body code φGPU. in 
preparation, 2011.

I. Berentzen, M. Preto, P. Berczik, et al. Binary black hole merger in galactic nuclei: 
Post-Newtonian simulations. The Astrophysical Journal, 695:455–468, 2009.

F. Chen, W. Ge, and J. Li. Molecular dynamics simulation of complex multiphase flows—
Test on a GPU-based cluster with customized networking. Science in China. Series 
B, 38:1120–1128, 2008.

F. Chen, W. Ge, L. Guo, et al. Multi-scale HPC system for multi-scale discrete simula-
tion. Development and application of a supercomputer with 1Petaflop/s peak per-
formance in single precision. Particuology, 7:332–335, 2009.

H. M. P. Couchman, P. A. Thomas, and F. R. Pearce. Hydra: An adaptive-mesh imple-
mentation of P 3M-SPH. The Astrophysical Journal, 452:797, 1995.

Y. Cui, Y. Chen, and H. Mei. Improving performance of matrix multiplication and FFT 
on GPU. In 15th International Conference on Parallel and Distributed Systems, 
729:13, 2009.

W. Dehnen. A very fast and momentum-conserving tree code. The Astrophysical 
Journal Letters, 536:L39–L42, 2000.

W. Dehnen. A hierarchical O(N) force calculation algorithm. Journal of Computational 
Physics, 179:27–42, 2002.

E. N. Dorband, M. Hemsendorf, and D. Merritt. Systolic and hyper-systolic algorithms 
for the gravitational N-body problem, with an application to Brownian motion. 
Journal of Computational Physics, 185:484–511, 2003.

M. Fellhauer, P. Kroupa, H. Baumgardt, et al. SUPERBOX—An efficient code for col-
lisionless galactic dynamics. New Astronomy, 5:305–326, 2000.



56    ACCELERATED MANY-CORE GPU COMPUTING

T. Fukushige, J. Makino, and A. Kawai. GRAPE-6A: A single-card GRAPE-6 for paral-
lel PC-GRAPE cluster systems. Publications of the Astronomical Society of Japan, 
57, 2005.

W. Ge and J. Li. Macao-scale pseudo-particle modeling for particle-fluid systems. 
Chinese Science Bulletin, 46:1503–1507, 2001.

W. Ge and J. Li. Macro-scale phenomena reproduced in microscopic systems-pseudo-
particle modeling of fludization. Chemical Engineering Science, 58:1565–1585, 2003a.

W. Ge and J. Li. Simulation of particle-fluid systems with macro-scale pseudo-particle 
modeling. Powder Technology, 137:99–108, 2003b.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of 
Computational Physics, 73:325–348, 1987.

A. Gualandris and D. Merritt. Ejection of supermassive black holes from galaxy cores. 
The Astrophysical Journal, 678:780–797, 2008.

T. Hamada and T. Iitaka. The Chamomile scheme: An optimized algorithm for N-body 
simulations on programmable graphics processing units. ArXiv Astrophysics e-prints, 
2007.

S. Harfst, A. Gualandris, D. Merritt, et al. Performance analysis of direct N-body algo-
rithms on special-purpose supercomputers. New Astronomy, 12:357–377, 2007.

R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Bristol, UK: 
Hilger, 1988.

C. Hou and W. Ge. GPU-accelerated molecular dynamics simulation of solid covalent 
crystals. Molecular Simulation, submitted, 2011.

W.-M.-W. Hwu. GPU Computing Gems. Morgan Kaufman Publ. Inc., 2011.

T. Ishiyama, T. Fukushige, and J. Makino. GreeM: Massively parallel TreePM code for 
large cosmological N-body simulations. Publications of the Astronomical Society of 
Japan, 61:1319, 2009.

A. Just, F. M. Khan, P. Berczik, et al. Dynamical friction of massive objects in galactic 
centres. The Monthly Notices of the Royal Astronomical Society, 411:653–674, 2011.

S. Komossa, V. Burwitz, G. Hasinger, et al. Discovery of a binary active galactic nucleus 
in the ultraluminous infrared galaxy NGC 6240 using Chandra. The Astrophysical 
Journal Letters, 582:L15–L19, 2003.

S. G. Lambrakos and J. P. Boris. Geometric properties of the monotonic lagrangian grid 
algorithm for near neighbor calculations. Journal of Computational Physics, 73:183, 
1987.

K. J. Lee, N. Wex, M. Kramer, et al. Gravitational wave astronomy of single sources 
with a pulsar timing array. ArXiv e-prints, 2011.

B. Li, X. Li, Y. Zhang, et al. Lattice Boltzmann simulation on NVIDIA and AMD GPUs. 
Chinese Science Bulletin, 54:3178–3185, 2009.

D. Lynden-Bell and R. Wood. The gravo-thermal catastrophe in isothermal spheres and 
the onset of red-giant structure for stellar systems. The Monthly Notices of the Royal 
Astronomical Society, 138:495, 1968.

J. Makino. A modified Aarseth code for GRAPE and vector processors. Proceedings 
of Astronomical Society of Japan, 43:859–876, 1991.

J. Makino. A fast parallel treecode with GRAPE. Publications of the Astronomical 
Society of Japan, 56:521–531, 2004.



REfERENCEs    57

J. Makino and P. Hut. Performance analysis of direct N-body calculations. The 
Astrophysical Journal Supplement Series, 68:833–856, 1988.

J. Makino and S. J. Aarseth. On a Hermite integrator with Ahmad-Cohen scheme for 
gravitational many-body problems. Publications of the Astronomical Society of 
Japan, 44:141–151, 1992.

J. Makino, T. Fukushige, M. Koga, et al. GRAPE-6: Massively-parallel special-purpose 
computer for astrophysical particle simulations. Publications of the Astronomical 
Society of Japan, 55:1163–1187, 2003.

K. Nitadori and J. Makino. Sixth- and eighth-order Hermite integrator for N-body 
simulations. New Astronomy, 13:498–507, 2008.

S. Pasetto, E. K. Grebel, P. Berczik, et al. Orbital evolution of the Carina dwarf galaxy 
and self-consistent determination of star formation history. Astronomy & 
Astrophysics, 525:A99, 2011.

F. R. Pearce and H. M. P. Couchman. Hydra: A parallel adaptive grid code. New 
Astronomy, 2:411–427, 1997.

S. F. Portegies Zwart, R. G. Belleman, and P. M. Geldof. High-performance direct gravi-
tational N-body simulations on graphics processing units. New Astronomy, 12:641–
650, 2007.

M. Preto, I. Berentzen, P. Berczik, et al. Fast coalescence of massive black hole binaries 
from mergers of galactic nuclei: Implications for low-frequency gravitational-wave 
astrophysics. ArXiv e-prints, 2011.

H.-Y. Schive, Y.-C. Tsai, and T. Chiueh. GAMER: A graphic processing unit accelerated 
adaptive-mesh-refinement code for astrophysics. Astrophysical Journal Supplement 
Series, 186:457–484, 2010.

H.-Y. Schive, U.-H. Zhang, and T. Chiueh. Directionally unsplit hydrodynamic schemes 
with hybrid MPI/OpenMP/GPU parallelization in AMR. The International Journal 
of High Performance Computing Applications, accepted for publication.

V. Springel. The cosmological simulation code GADGET-2. Monthly Notices of the 
Royal Astronomical Society, 364:1105–1134, 2005.

R. Spurzem. Direct N-body simulations. Journal of Computational and Applied 
Mathematics, 109:407–432, 1999.

R. Spurzem, P. Berczik, G. Hensler, et al. Physical processes in star-gas systems. 
Publications of the Astronomical Society of Australia, 21:188–191, 2004.

R. Spurzem, P. Berczik, I. Berentzen, et al. From Newton to Einstein—N-body dynamics 
in galactic nuclei and SPH using new special hardware and astrogrid-D. Journal of 
Physics Conference Series, 780(1):012071, 2007.

R. Spurzem, I. Berentzen, P. Berczik, et al. Parallelization, special hardware and post-
Newtonian dynamics in direct N-body simulations. In S. J. Aarseth, C. A. Tout, and 
R. A. Mardling, editors, The Cambridge N-Body Lectures, volume 760 of Lecture 
Notes in Physics, Berlin: Springer Verlag, 2008.

R. Spurzem, P. Berczik, G. Marcus, et al. Accelerating astrophysical particle simulations 
with programmable hardware (FPGA and GPU). Computer Science—Research and 
Development (CSRD), 23:231–239, 2009.

R. Spurzem, P. Berczik, K. Nitadori, et al. Astrophysical particle simulations with 
custom GPU clusters. In 10th IEEE International Conference on Computer and 
Information Technology, pp. 1189, 2010.



58    ACCELERATED MANY-CORE GPU COMPUTING

R. Spurzem, P. Berczik, T. Hamada, et al. Astrophysical particle simulations with large 
custom GPU clusters on three continents. In International Supercomputing 
Conference ISC 2011, Computer Science—Research and Development (CSRD), 
accepted for publication, 2011.

A. C. Thompson, C. J. Fluke, D. G. Barnes, et al. Teraflop per second gravitational lensing 
ray-shooting using graphics processing units. New Astronomy, 15:16–23, 2010.

P. Wang and T. Abel. Magnetohydrodynamic simulations of disk galaxy formation: The 
magnetization of the cold and warm medium. The Astrophysical Journal, 696:96–109, 
2009.

P. Wang, T. Abel, and R. Kaehler. Adaptive mesh fluid simulations on GPU. New 
Astronomy, 15:581–589, 2010a.

X. Wang, W. Ge, X. He, et al. Development and application of a HPC system for multi-
scale discrete simulation—Mole-8.5. In International Supercomputing Conference 
ISC10, 2010b.

H.-C. Wong, U.-H. Wong, X. Feng, et al. Efficient magnetohydrodynamic simulations 
on graphics processing units with CUDA. ArXiv e-prints, 2009.

Q. Xiong, et al. Large-scale DNS of gas-solid flow on Mole-8.5. Chemical Engineering 
Science, submitted, 2010.

G. Xu. A new parallel n-body gravity solver: TPM. Astrophysical Journal Supplement 
Series, 98:355, 1995.

J. Xu, Y. Ren, X. Yu, et al. Molecular dynamics simulation of macromolecules using 
graphics processing unit. Molecular Simulation, submitted, 2009.

J. Xu, H. Qi, X. Fang, et al. Quasi-realtime simulation of rotating drum using discrete 
element method with parallel GPU computing. Particulogy, in press, 2010a.

J. Xu, X. Wang, X. He, et al. Application of the Mole-8.5 supercomputer—Probing the 
whole influenza virion at the atomic level. Chinese Science Bulletin, in press, 2010b.

R. Yokota and L. Barba. Treecode and fast multipole method for N-body simulation 
with CUDA. ArXiv e-prints, 2010.

R. Yokota, J. P. Bardhan, M. G. Knepley, et al. Biomolecular electrostatics using a fast 
multipole BEM on up to 512 GPUs and a billion unknowns. ArXiv e-prints, 2010.

K. Yoshikawa and T. Fukushige. PPPM and TreePM methods on GRAPE systems for 
cosmological N-body simulations. Publications of the Astronomical Society of Japan, 
57:849–860, 2005.



Chapter 4
An Overview of  

the SimWorld 
Agent-Based Grid 

Experimentation System
Matthias Scheutz

Department of Computer Science, Tufts University, Medford, MA, USA

4.1  INTRODUCTION

Computational modeling is becoming increasingly important, even in fields 
that have not traditionally used computational models (e.g., archaeology or 
anthropology). Researchers in both the natural and social sciences employ 
computer simulations to elucidate the time course of physical and nonphysical 
processes, or to explore the dynamics among different interacting entities, in 
an effort to discover new relationships that might lead to generalizable laws 
or to verify hypothesized principles as part of the empirical discovery  
loop (Peschl and Scheutz, 2001). However, there are two main obstacles to 
making effective use of today’s (and likely also tomorrow’s) computing envi-
ronments. First, navigating the complexity associated with running large-scale 

59

Jack J. Harris
Human Robot Interaction Laboratory, Indiana University, Bloomington, IN, USA

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski, 
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



60    An Overview Of the SimwOrld Agent-BASed grid experimentAtiOn SyStem 

computational simulations requires detailed knowledge about the available 
high-performance computing (HPC) environments. Such prerequisite knowl-
edge includes how to set up a simulation on the host computers (possibly 
including compilation on the target platform with installation of all the required 
libraries), how to schedule sets of simulations through the batch system, how 
to retrieve the resultant data, and how to troubleshoot if simulations do not 
finish (because they were terminated by the cluster’s batch system for taking 
up more than the allocated CPU time, memory, or storage allotment). The 
second obstacle is the management of increasingly large data sets that are the 
result of explorations of larger and larger model parameter spaces, both in 
terms of the dimensionality and sampling density of the space. This includes 
the preprocessing of data to facilitate statistical analysis and data mining, and 
the visualization of interesting relationships among data sets. Either one of 
these obstacles is usually prohibitive for nonexperts and will ultimately prevent 
modelers from using HPC resources to run large-scale simulations.

While there are certainly other challenges involved in making computa-
tional modeling more accessible to nonprogrammers (e.g., better modeling 
environments and tools for developing computational models in the first place), 
in this chapter, we will focus on the above-mentioned two challenges related to 
the HPC environment and the subsequent data analysis and visualization 
phase. Our goal is to make the computational modeling process in HPC envi-
ronments as easy and intuitive as possible for modelers. This includes providing 
a computational framework that can automatically schedule, parallelize, dis-
tribute, and run simulations using different strategies for the exploration of 
large parameter spaces. Moreover, it includes tools for automatically collecting 
data, organizing data in databases (that enable efficient data mining and statis-
tical analyses), and visualizing data in effective, easily specifiable ways. 
Ultimately, we would like to have a framework that supports the entire compu-
tational modeling process (Peschl and Scheutz, 2001): from developing the first 
model to testing and running it, to collecting, analyzing, and visualizing data, to 
comparing data to empirical findings, revising the model, testing it, and so forth. 
Furthermore, this infrastructure should attempt to minimize model run times 
to speed up this process, for example, by automatically parallelizing the model 
(as we do not want to require modelers to be able to implement parallel code 
that can be executed on a cluster). Moreover, it would be desirable if the infra-
structure could automatically handle vastly heterogeneous computing infra-
structures (e.g., from dedicated homogeneous HPC environments to 
heterogeneous ad hoc clusters with different operating systems). It would also 
be desirable for the infrastructure to dynamically adjust to changing computing 
environments since computational resources and resource availability can vary 
greatly over time and across research settings, and typically, very specific 
knowledge is required to schedule and run processes in each environment.

To this end, we present SimWorld Agent-Based Grid Experimentation 
System (SWAGES). SWAGES has been under development for over a decade 
in our lab. SWAGES is used extensively for various kinds of agent-based 



intrOductiOn    61

modeling. In particular, SWAGES was codeveloped with SimWorld1 (Scheutz, 
2001), an agent-based modeling environment built on top of the Birmingham 
SimAgent agent toolkit (Sloman and Logan, 1999). SimWorld is a generic 
simulation environment for spatial agent-based models that provides both 
interactive and batch mode execution and permits the definition of agent-
based models in several programming languages. It has been used extensively 
for simulations of artificial life scenarios (e.g., Scheutz and Schermerhorn, 
2008), evolutionary investigations (e.g., Scheutz and Schermerhorn, 2005), 
social simulations (e.g., Scheutz and Schermerhorn, 2004), swarm-based simu-
lations (e.g., Scheutz et al., 2005), and individual-based biological models (e.g., 
Scheutz et al., 2010). It has also been used in education for teaching model 
exploration and model development (e.g., Scheutz, 2008). SimWorld was the 
first simulation environment to support the automatic parallelization algo-
rithms specified by and implemented in SWAGES (Scheutz and Schermerhorn, 
2006). While the reimplementation of SimWorld in Java is still under develop-
ment, several additional asynchronous scheduling algorithms have already 
been included. Evaluation of these asynchronous scheduling policies has dem-
onstrated performance gains compared to the typical cycle-based scheduling 
policy used in the previous version of SimWorld and most other discrete-event 
simulators (Scheutz and Harris, 2010).

SWAGES can be used to explore large parameter spaces of various models 
of cognition, both connectionist models and classical cognitive architectures. 
On the connectionist side, our neural network simulator NNSIM has been 
used to explore parameter spaces of several neural networks, including neural 
networks for spatial attention (Scheutz and Gibson, 2006) and ideomotor 
compatibility (Boyer et al., 2009). On the cognitive side, a special-purpose 
Lisp-based ACT-R “wrapper component” was developed to run the ACT-R 
cognitive architecture (Anderson et al., 2004) and to pass various model 
parameters between the cognitive model and SWAGES, thereby enabling 
automatic explorations of large parameter spaces (e.g., using various ACT-R 
models in the “psychomotor vigilance task”; Gluck et al., 2007).

SWAGES started out as a set of shell scripts for running agent-based arti-
ficial life models on remote hosts in the late 1990s and has since evolved into 
a robust, advanced modeling framework that meets all of the above-mentioned 
requirements. The following list highlights some of its features:

1. SWAGES runs on any platform that supports Java and can be automati-
cally distributed over multiple hosts to facilitate high throughput for 
large numbers of parallel simulations.

2. It use a heterogeneous computing environment including any mixture of 
dedicated compute clusters or stand-alone hosts with no preinstalled 
software required on any host (only secure shell access is needed).

1 SimWorld was the first simulation environment supported by SWAGES, hence the “SimWorld” 
prefix in SWAGES, even though it now works with many simulation environments.



62    An Overview Of the SimwOrld Agent-BASed grid experimentAtiOn SyStem 

3. It works with any simulation environment (including closed-source simu-
lations) that can be minimally parameterized (e.g., through command-
line arguments or a special-purpose socket-based protocol).

4. It can automatically parallelize simulations based on available computa-
tional resources for simulation environments that support paralleliza-
tion, including synchronous and asynchronous scheduling algorithms, to 
maximize throughput using a dynamic pool of hosts.

5. It provides a simple intuitive Web-based user interface for specifying, 
scheduling, and running large-scale model parameter spaces (including 
different supplied exploration algorithms as well as user-defined strate-
gies that can automatically schedule additional simulations based on 
simulation outcomes).

6. It enables automatic data retrieval and population of databases for effi-
cient data mining.

7. It facilitates automatic statistical analyses, which include both model 
fitting based on fitness criteria (error thresholds, types of models, etc.) 
and model discovery (based on constraints on model classes).

8. It enables automatic visualization of different data sets obtained  
from large-scale simulations (and for linking in other visualization 
environments).

9. It contains mechanisms for ensuring that simulations will eventually 
finish (despite crashes, interrupted simulations, or lack of available hosts), 
including checkpointing mechanisms if supported by the simulation 
model.

SWAGES is described in detail in the following sections, starting with an 
overview of the system architecture. Next, the new implementation of 
SWAGES in the distributed Agent Development Environment (ADE) 
(Scheutz, 2006) is discussed and some of the advantages of distributing its 
architecture are highlighted. Then, we describe an application of SWAGES in 
the context of a biological agent-based model to highlight how SWAGES 
addresses the challenges of exploring large model parameter spaces in HPC 
environments. Finally, we compare SWAGES to related large-scale simulation 
frameworks and summarize its new features.

4.2  SYSTEM ARCHITECTURE

The initial design goal for SWAGES is to simplify the modeling process by 
allowing modelers to define model parameter spaces they want to explore and 
to submit them to SWAGES for execution. SWAGES then automatically 
schedules all simulations, runs them, collects the resultant data, and transfers 
them to a specified place in the file system. It also performs simple statistical 
analyses and displays them through a Web-based user interface. Figure 4.1 





64    An Overview Of the SimwOrld Agent-BASed grid experimentAtiOn SyStem 

queues (to which new experiments are submitted by the experiment server) 
and for starting them on remote hosts. The experiment scheduler will schedule 
new simulations when hosts become available and will only create experiment 
data structures for these simulations on demand (so as not to run out of 
memory when processing large-scale experiment sets). The client server 
then manages a remote simulation and maintains an open communication 
channel with the simulation instance, keeping track of the simulation’s prog-
ress, state, update, and degree of parallelization. This ongoing monitoring is 
critical for error detection and recovery so the client server can restart or 
resume the simulation elsewhere based on its saved state, if available, when a 
simulation crashes (e.g., due to operating system problems on its host), is not 
responding (e.g., due to network problems), or cannot be continued (e.g., 
because its current host does not meet user-defined criteria for running simula-
tions anymore). The Watch Dog implements a second level of supervision 
that is particularly important for dynamic computing environments where 
hosts can “disappear” from the pool of usable machines without notification. 
It regularly checks all simulation clients for progress, terminates clients that 
are stuck or are not responsive, and reschedules simulations either from 
scratch or from saved states. The server-side representation of remote simula-
tion hosts is achieved by the SimHost component, which keeps track of any 
simulations running on the host and is also responsible for monitoring the 
host’s availability based on user-defined criteria (e.g., the remaining CPU time 
on a cluster host or whether a console user is logged on). The host manager 
keeps track of all available simulation hosts by managing a dynamic pool of 
available resources. It can automatically request new hosts in HPC environ-
ments by submitting requests on demand through the cluster’s batch queuing 
system.

On the client side, special SimClients representing particular simulation 
environments communicate updates about the simulations to the (server-side) 
client servers. SimClients are responsible for saving the state of simulations (if 
supported by the simulation) and for routinely checking that the simulation 
is still allowed to run on its current host according to user-defined criteria. 
Generic SimClients are available to interface with simulations written in 
various programming languages (Java, Pop11, Scheme, Lisp, and R), and cus-
tomized SimClients are available for SimWorld (Scheutz, 2001) and ACT-R 
(Anderson et al., 2004). Furthermore, SWAGES also supports various special-
purpose reusable clients (e.g., a generic gradient search client2).

Recently, however, it has become clear that to truly scale up to the require-
ments of tomorrow’s modelers, several additional steps in the design and 
implementation of SWAGES need to be taken. First, the server-side part of 

2 This client is capable of wrapping a generic simulation process and supports batching a group 
of parameters to run on the client. This client has a twofold benefit: (1) It minimizes the amount 
of independent server connections, which can incur an overhead for very fast simulations and  
(2) aids distributed Monte Carlo search experiments.



SyStem Architecture    65

SWAGES, while parallelized, was monolithic (i.e., all server-side components 
had to run within the same Java virtual machine on the same host). And while 
multicore CPUs are partly able to alleviate the processing bottleneck, they 
cannot help the networking bottleneck created by a monolithic grid engine that 
communicates with thousands (if not tens of thousands) of simulations simul-
taneously. The solution, therefore, is to distribute and duplicate (some of) the 
parallelized server-side components over multiple hosts. Second, for SWAGES 
to effectively handle large data sets (of hundreds of gigabytes and beyond), 
simply storing data as text files in the file system is not practical as data queries 
searching sequentially through these large files would take too much time. 
Rather, a database interface is required that allows automatic commits of data 
(as results are produced by SimClients) into a database (which potentially can 
be distributed itself and can facilitate efficient data querying and data mining). 
Third, to aid the modeler in the exploration of large parameter spaces, auto-
matic statistical analyses on the returned intermediate data sets are required 
in order to determine whether a particular region of the parameter spaces 
should be further explored. Hence, additional mechanisms for automatic data 
analysis, model fitting and model discovery were developed and integrated. 
Fourth, the previously integrated simple visualization mechanisms were too 
limited to do justice to the complexities of large data sets. Therefore, a new 
visualizer component has been added to provide better, more effective auto-
matic generation of data visualizations based on model space parameters and 
experimental results. Finally, to reduce the complexities of data exchanges 
between different components (from the simulation environment to the data-
base, statistical analysis, and visualization) and to enable the easy integration 
of external components (e.g., simulation environments, statistical analysis 
tools, and visualizers), a new open, experiment definition and data exchange 
format based on the extensible markup language (XML) was specified and 
implemented.

To address the required modification of SWAGES (for scaling up to large 
numbers of simultaneous simulations), all SWAGES components were reim-
plemented in the distributed ADE (e.g., Scheutz, 2006). ADE provides many 
features that are of critical importance for the distributed version of the 
SWAGES server-side components: automatic load balancing and host man-
agement, component supervision, error detection and restart, and various 
other mechanisms for autonomic computing. Moreover, ADE’s tight security 
services provide fine-grained, method-level authentication, which is integtral 
in an open distributed computing environment. ADE also provides distributed 
graphical interfaces that allow location-independent system configuration and 
monitoring. To leverage these features, SWAGES components were converted 
into ADE components and new features related to large-scale computational 
simulation experimentation were added. At a high level, SWAGES is now 
composed of the following components: the manager, the engine, the analyzer, 
and the visualizer (the extended server-side architecture of SWAGES as 
implemented in ADE is shown in Fig. 4.2).





SyStem implementAtiOn    67

an interface for querying the simulation results closest to a particular param-
eter combination). This type of post hoc data mining of a parameter space lets 
modelers identify optimal models during model validation and evaluation.

By complementing the analyzer, the visualizer can provide a way for quickly 
identifying interesting parameter relationships, understanding the breadth of 
a simulation’s performance or even identifying the problematic performance 
of a simulation through interactive three-dimensional renderings of the pro-
cessed data. The visualizer can plot individual data points, line plots, lego plots, 
and even surface plots in order to help explain the properties of the perfor-
mance space.

4.3  SYSTEM IMPLEMENTATION

The ADE middleware for designing distributed autonomous agent systems 
was chosen as the implementation platform for the extended version of 
SWAGES for several reasons. First, a number of other higher-level architec-
tures have already been successfully developed within the ADE framework 
including DIARC, an embodied agent framework for robot software develop-
ment (Scheutz et al., 2007) and ADE-Unreal, a virtual world simulator. Thus, 
ADE provides a suitable infrastructure that allows functionality associated 
with SWAGES to be distributed across a set of computers. ADE is also imple-
mented in Java, which aids easy code integration of existing SWAGES com-
ponents. Furthermore, this distributed infrastructure permits the introduction 
of new processor- and storage-intensive functionality associated with large-
scale computational experimentation.

To facilitate the integration of the separate functional components, each 
existing and new SWAGES service is implemented or “wrapped” as an ADE 
component. This is possible because ADE provides a class hierarchy for 
extending ADE services, which gives new services the ability to intercommu-
nicate with one another as well as utilize core ADE features (such as server 
security, a server recovery mechanism, service logging, and monitoring).  
Access to ADE services is readily accessible using this wrapping mechanism; 
however, non-Java-based services can also intercommunicate with ADE 
servers using Web services in the form of XML-RPC3 or Representational 
State Transfer (Fielding and Taylor, 2002). New ADE services extending 
ADEWebServicesServer permit the exposure of a subset of remote methods 
based on user credentials and remote IP.

ADE enables secure message transport to SWAGES components via a 
remote method calling feature that utilizes Java’s Remote Method Invocation, 
a set of application programming interfaces that allow developers to build 
distributed applications. ADE also provides a metalevel naming scheme to 

3 http://xmlrpc.com/spec.

http://xmlrpc.com/spec


68    An Overview Of the SimwOrld Agent-BASed grid experimentAtiOn SyStem 

allow an abstraction over these interfaces capable of service migration. The 
remote method calling feature of ADE is protected using a centralized authen-
tication and access system. This is the predominant mechanism by which ADE 
services communicate.

ADE also provides a method for creating distributed graphical user inter-
faces (GUIs) using ADE-GUI, an extensible framework that abstracts away 
many of the issues of distributed GUI development. This abstraction and 
encapsulation of functionality thereby aids the easy creation and integration 
of new GUI components. Many components within the system implement 
GUIs that can be viewed through ADE-GUI components; however, some 
servers provide an additional Web-based user interface for control.

4.3.1  Key Components

4.3.1.1  Messaging  The SWAGES system communicates using our new 
Simulation Specification Markup Language (SSML). This simple XML speci-
fication allows all components to utilize the same data structures for defining 
simulation experiments. Such a shared representation is useful because many 
components need access to the same type of information (e.g., the analyzer 
and the visualizer both need access to schemas describing the results data). 
There are primarily three types of top-level SSML structures: execution details, 
parameter space definition, and the results definition schema. By using these 
basic structure, SWAGES components can communicate with one another 
(using the standard message passing mechanisms defined within ADE).

4.3.1.2  Manager   Centralized access to the collection of SWAGES com-
ponents is provided through the manager. The manager is responsible for 
receiving all of the components’ specifications used to process, analyze, and 
evaluate the experiments. This role is similar to that of the experiment server 
in the previous version of SWAGES. The manager receives the three basic 
SSML structures from a user and passes them along to other SWAGES com-
ponents. The manager also relays to the engine simulation execution details 
along with the parameter space information, which together define the scope 
of the simulations to evaluate. User interfaces to the manager are provided 
via the command line and other external add-on ADE components in the ADE 
network. The manager also exposes programming methods using Web services 
to make the direct submission from external user applications possible.

4.3.1.3  Engine   The engine is essentially a distributed form of the server-
side SWAGES components with several extensions to let it communicate 
externally with other ADE services. The engine is composed of three distinct 
ADE components that allow server-side components of SWAGES to run on 
multiple hosts. These three new components of the engine communicate with 
each other in order to carry out the task of distributing and managing the 
execution of simulations.



SyStem implementAtiOn    69

4.3.2  Novel Features in SWAGES

Next, we briefly summarize the advantages of distributing the SWAGES archi-
tecture and its extended features that allow it to interoperate with the other 
components.

4.3.2.1  Distributed SWAGES  The distribution of the subcomponents of 
the engine across a set of hosts provides many performance advantages. As 
the number of executing SimClients grows, so, too, does the amount of com-
munication back to the SWAGES server. Large amounts of concurrent com-
munication can potentially render a client server as a bottleneck for a parallel 
simulation run. Processing these messages can be both a processor-intensive 
operation as well as a bandwidth bottleneck. Distributing the management in 
a hierarchical manner produces a completely scalable system (e.g., a new client 
server can be started on a new host as soon as existing ones reach their capac-
ity limits based on experiment submissions and available simulation hosts).

4.3.2.2  Postprocessing  The system provides additional components to 
process the results returned by the remote simulations. These postprocessing 
tools provide services including data warehousing, statistical analysis, and 
visualization features. Some of the services rely on system-unique resources 
such as database installation or even graphic card requirements. However, as 
is the case for all ADE components, these services do not need to run on the 
same host as the engine or the manager but can run on any host in the ADE 
environment that meet the requirement of the service.

4.3.2.3  Analyzer/Database  It is not uncommon for a large-scale distrib-
uted simulation experiment to evaluate billions of parameter combinations 
and to produce gigabytes (if not terabytes) of resulting data. As Charlot et al. 
(2007) point out, “These data need to be managed, shared and analysed using 
varied computational methodologies, such as data mining and database man-
agement systems.” SWAGES can perform such tasks through the analyzer, 
which provides the storage and efficient management capabilities to facilitate 
automated results analysis as well as real-time interactive data mining.

4.3.2.4  Database  Loading all simulation results into the main memory for 
analysis quickly becomes infeasible with large-scale simulations producing 
terabytes of data; even searching for a desired result in a massive data set (e.g., 
over 1 billion simulation results) can be extremely time-consuming if standard 
sequential file access is used to scan a file system. The analyzer, therefore, 
utilizes a MySQL4 database to house the massive number of results produced 
by SWAGES. The tables are indexed using “B+ trees” (Comer, 1979), which 
minimize the number of file system accesses required to search for a result 

4 http://mysql.com.

http://mysql.com


70    An Overview Of the SimwOrld Agent-BASed grid experimentAtiOn SyStem 

while also maximizing the usage of the main memory of the system. Users can 
manage and manually analyze a stored data set by accessing it via a Web-based 
user interface.

4.3.2.5  Analysis  Processes  With a robust data storage and retrieval 
backend in place, the analyzer can provide automated analysis of large amounts 
of data. The processes for doing this analysis involve creating and populating 
a model repository (database), learning topographical functions that best fit 
the data (automated analysis), and executing predictions and reverse lookups 
from the data store (interactive analysis).

The process begins when information about the parameter space is received 
from the manager and a model repository is created to house the data. A 
model repository is defined in terms of the variables of the parameter space 
for the experiment. Using additional information provided by the manager, 
the analyzer then subscribes to the engine and requests all results produced 
for a given experiment. The received data is parsed and stored into the respec-
tive model repository for that experiment. The analyzer then begins to produce 
a set of potential “hypotheses” about the functional relationship between the 
parameters of the space.

As results are uploaded from the remote simulations, automated analysis 
of the data begins. The goal of the analysis is to find a function that best 
describes the topographical form of the data based on the set of function 
schemas originally generated in the previous process. Multivariate regression 
analysis, which uses the database directly, is used to evaluate each candidate 
function. Earlier versions of the analyzer utilized multiple subprocesses 
running R5 and MATLAB6 for statistical analysis. Though effective, memory 
constraints for very large data sets produced run times an order of magnitude 
slower than the database statistical package written for the current analyzer. 
Thus, relying on the database directly versus using external statistics packages 
has proven to be an efficient way of doing automatic data analysis for large 
data sets.

As new results flow into the system and the data set grows, the candidate 
topographical function forms are continuously reevaluated based on the good-
ness of fit to the current data set. The selection of which functions to evaluate 
is determined by a greedy algorithm that identifies those function forms that 
best fit the data set prior to the addition of the new results. The result of this 
process is that at any moment, the analyzer has a set of functions that describe 
the relationship of the parameters for the experiment.

4.3.2.6  Visualizer  The visualizer provides an interactive three-dimensional 
graphical interface, using the FreeHEP Java3D7 library extensions (produced 

7 http://java.freehep.org.

6 http://www.mathworks.com/products/matlab/.

5 http://cran.r-project.org.

http://java.freehep.org
http://www.mathworks.com/products/matlab/
http://cran.r-project.org


A SwAgeS cASe Study    71

by the high-energy physics modeling community), for plotting model param-
eters against one another to aid the evaluation process. However, visualization, 
like data analysis, is complicated by the problem of handling vast amounts of 
data; therefore, the visualizer provides preprocessing mechanisms for data to 
minimize the amount of data that needs to be sent to the user’s three-
dimensional rendering system. Hence, the visualizer consists essentially of two 
components: the client-side rendering application and the database plus the 
preprocessing server-side scripts. This architecture makes the visualization of 
massive data sets possible and efficient by exploiting the speed of the highly 
indexed database representation and by minimizing the data that need to be 
transferred to the client.

4.4  A SWAGES CASE STUDY

In this section, we present an interdisciplinary research project in biology and 
computer science that demonstrates the use and application of SWAGES. We 
first summarize the research questions addressed in the particular project and 
briefly introduce the agent-based simulation environment used to explore 
these questions. Then, we discuss the role SWAGES played in conducting the 
simulation experiments and the subsequent data analysis, showing how large-
scale simulation experiments can be defined and executed in a grid environ-
ment and ultimately, how the results returned from the parallel simulations 
can be stored, analyzed, and visualized to provide feedback to the modeler.

4.4.1  Research Questions and Simulation Model

The main research question we explored in the project comes from mate 
choice in biology: How do females pick their mates? Specifically, how do 
female tree frogs decide which male tree frog to approach in the swamp at 
night when the only information about males available to females are the 
acoustic properties of the males’ mating calls? Prior work in theoretical and 
ecological biology proposed two main competing strategies for females: “Pick 
the closest out of N males” or “pick the closest above some threshold θ.” To 
test the success of and the trade-offs among these two strategies, we developed 
a social agent-based model that explicitly models male and female frogs as 
“agents” located in a spatially extended, two dimensional environment. The 
model included both environmental parameters (e.g., the number and distribu-
tions of male and female frogs) and individual parameters (e.g., the call quality 
of males or the mating strategy employed by females). The goal was to sys-
tematically vary environmental and individual parameters to gain an under-
standing of the various dependencies and trade-offs among the different 
dimensions (e.g., how mating success depended on the distribution of males, 
how time to mating depended on the number of competing females, and how 
the male–female ratio influenced the performance of the different strategies). 



72    An Overview Of the SimwOrld Agent-BASed grid experimentAtiOn SyStem 

Details about the biological questions and the computational model have been 
reported by Scheutz et al. (2010).

4.4.2  The Simulation Environment

The social female choice model was implemented as a discrete-event agent-
based simulation in Java. After initial testing of the simulation in a graphical 
environment to verify that all agents individually behaved as expected, the 
simulation environment was connected to SWAGES to permit the automatic 
scheduling and running of the millions of simulations required for the param-
eter space we had set out to explore. The integration of the simulation with 
SWAGES was accomplished by extending a SWAGES client-side component, 
the JavaClient, and by overriding some of its methods. The primary method 
that had to be overridden was the entry procedure, which receives a list of 
start-up parameters used by the simulation to govern its operations (other 
methods can also be overridden if advanced features such as checkpointing or 
SWAGES-level control over the event-scheduler algorithm are desired). The 
main functionalities provided by the JavaClient are the systematic representa-
tion of agent types and the parallelizable discrete-event scheduler (details of 
an integration that takes advantage of the advanced intrasimulation discrete-
event scheduling algorithms are described by Scheutz and Harris, 2010). These 
predefined algorithms allow for quick model development and verification. 
Moreover, the social female choice simulation environment used mechanisms 
provided by the JavaClient for handling initial conditions and for specifying 
event details (e.g., mating events) for data recording during simulation runs. 
All data are recorded in systematically named files, which can then be col-
lected by SWAGES for subsequent data analysis.

4.4.3  Simulation Runs in SWAGES

The data presented in this case study were obtained by operating SWAGES 
within a stand-alone HPC configuration where both the server and processing 
nodes all operated on the BigRed supercomputer.8 Other phases of the 
research project used different HPC configurations (e.g., a heterogeneous set 
of processing nodes consisting of local lab machines and compute nodes on a 
shared resource grid). Regardless of the particular composition of the comput-
ing environment, the simulation environment, along with resource files defin-
ing the parameter space, the simulation’s execution details, and the resulting 
output files’ data format, needs to be submitted to the SWAGES server. 
SWAGES then initializes simulations on compute nodes as they become avail-
able, passing start-up parameters to simulation instances and collecting data 
from simulation output files for subsequent insertion into the SWAGES 
database.

8 For details on the BigRed system, see http://kb.iu.edu/aueo.html.

http://kb.iu.edu/aueo.html


A SwAgeS cASe Study    73

For the particular experiment set performed on BigRed, three different 
mating strategies were evaluated: a minimum threshold strategy (where the 
closest mate exceeding some fitness criteria is selected), a best of N strategy 
(where the mate with the highest fitness metric is chosen out of the N closest 
candidate mates), and a random mating strategy (used as a baseline). Each 
strategy was tested across the same set of initial starting conditions which 
varied different environment factors and the characteristics of the frog popula-
tion. For example, for the random condition to be evaluated across the range 
of initial conditions, 240,000 simulations were run. More simulations were run 
for the minimum threshold and best of N because both strategies included 
additional strategy parameters (fitness threshold level and size of N, respec-
tively). For the best of N strategy, five different values of N were evaluated. 
This resulted in 1,200,000 simulation runs (5 × 240,000). For the minimum 
threshold strategy, 10 different values for the fitness threshold were tested, 
resulting in 2,400,000 additional simulation runs (10 × 240,000).

In order to execute such a large number of simulations quickly, a large 
number of compute nodes were required. However, at the time of submission, 
the queue on the cluster environment was long for simulations with a large 
number of compute node requests. Rather than attempting to reserve a large 
number of nodes that would have caused the requests to sit in the queue for 
weeks, we decided to let SWAGES request compute nodes dynamically and 
individually (up to a maximum number of 50 node requests at a time each for 
4-hour increments). When nodes became available, SWAGES then scheduled 
and executed simulations until that node’s allotted time expired.

4.4.4  Data Management and Visualization

As a result of employing this dynamic resource request strategy, the entire set 
of 3,840,000 simulations finished in a little over 2 weeks from the time they 
were submitted (roughly 17 days). The simulations generated over 11 giga-
bytes of summary data (with precomputed statistics) and over 10 terabytes of 
detailed results in over 35 billion files. Clearly, without tools like SWAGES, 
the number of simulations and the size of the resultant data would be prohibi-
tive for a model exploration of this magnitude. For example, for large data sets 
like the ones produced in this study, standard file systems are not a practical 
method for data management when searching for patterns inside the data files 
requires a slow scan of every file. This is where the automatic insertions of 
results in a database has proven to be of great use for quickly querying the 
data set. Earlier versions of SWAGES did not utilize a database. Instead, 
custom scripts were generated to search the returned result files for patterns 
of interest. To appreciate the potential speedup provided by the automatic 
database creation and usage, consider the time it would take to search  
through every result file to find the set of parameters that produced the 
maximum number of mated tree frogs: The process of using result files involved 
searching each file, which required N file accesses, where N is the total number 



74    An Overview Of the SimwOrld Agent-BASed grid experimentAtiOn SyStem 

of parameter combinations explored. In the case where the data are stored in 
an indexed database, the desired value can quickly be found without the need 
to examine every simulation result.

Once the data are preprocessed, visualizations can be produced. In previous 
versions of SWAGES, these visualizations had to be generated manually; in 
the current version, visualizations can also be produced automatically. Figure 
4.3 shows examples of the simulation results from the frog study that visualize 
different effects of mating strategies. These types of graphs are immediately 
meaningful for the modeler and have been used both for verifying theoretical 
predications as well as developing new, refined computational models.

4.5  DISCUSSION

Computational frameworks and infrastructures that are intended to support 
large-scale explorations of model parameter spaces face significant challenges 
as the numbers of usable CPUs and hosts in clusters and grid environments 
rapidly grow and data sets increase in size by several orders of magnitude. The 
first question that arises is how an infrastructure will “scale up” in light of this 
enormous growth in both resources and resource demands. A second related 
question is how the large amounts of data should be managed (i.e., stored, 
accessed, analyzed, mined, and visualized). And third, as infrastructures 
become larger and more complex, a technical question arises as to whether 
and to what extent these infrastructures are able to autonomously handle 
various types of errors (component crashes, network problems, etc.) that are 

Figure  4.3  Sample graphs of results generated based on a systematic exploration of the 
parameter space for two strategies. the left graph shows the dependence of the quality of  
the mated male frogs on the number of females in the simulation and different parameters  
for the best of n female mating strategy. the right graph shows the dependence of the quality 
of the mated male frogs on their average call qualities and the value for the minimum threshold 
in the female mating strategy.

 22
 28
 26
 24
 22
 20
18
16
 14
12

 20

18

M
ean M

ated Q
uality

M
ean M

ated Q
uality16

5
4

3Best of N

Mean Population
QualityNumber of Females

Minimum Threshold

2422201816141210 8 6

2
1 20 15

10
6 8 10121416182022245



diScuSSiOn    75

inevitable in complex computing systems. The goal of the reimplementation 
of SWAGES in the ADE middleware is to answer all three questions and to 
address the associated challenges.

4.5.1  Automatic Parallelization of Agent-Based Models

One feature that makes SWAGES unique among experimentation frame-
works is its ability to automatically parallelize and distribute agent-based 
models. This feature is particularly important for modelers who would like to 
quickly run a particular model, visualize the results, possibly change a few 
parameters, and run it again. This type of interactive model exploration is 
usually only possible with models that run over a short period of time on a 
single computer, but not with models that have run times of tens of minutes 
or hours (when minutes might already be too long). Since there is a natural 
limit to how fast a simulation can run on a single computer, the only way to 
allow quasi-real-time interactions is to parallelize the model. However, paral-
lelization usually requires advanced programming skills and support by the 
modeling environment (neither of which is usually available). SWAGES 
addresses this problem by removing the burden of parallelization from the 
modeler. Specifically, the need for a modeler to manually execute model simu-
lation runs is eliminated by SWAGES with its ability to automatically utilize 
all computational resources available for parallelization. This is possible for 
simulation environments that implement an “event horizon,” a particular 
notion of influence a simulated entity can have on other simulated entities 
within the model simulation (Steinman, 1994; Scheutz and Schermerhorn, 
2006). While the event horizon is currently only implemented for (metric) 
spatial agent-based models, it can be generalized to nonspatial models. For 
example, it could be used for nonspatial models that are based on interaction 
graphs that connect every entity in a simulation to those entities with which 
it can interact.

In addition to parallelization, SWAGES also provides mechanisms to 
support asynchronous updating and scheduling within the simulation environ-
ment. Parallelization allows simulation instances to run asynchronously on 
different hosts until one simulation instance needs data from an entity that is 
updated in another simulation instance. In asynchronous scheduling, simula-
tion entities are not updated cycle by cycle but are scheduled (to the extent 
possible) based on which entity in one simulation instance will be required to 
provide the information needed by another simulation instance in the future. 
This anticipatory way of updating entities within each simulation instance in 
the distributed simulation system can lead to significant overall run-time 
speedups (Scheutz and Harris, 2010).

In general, the automatic parallelization of simulation models enables fast 
“model discovery loops” (especially with complex models) while alleviating 
the modeler from having to parallelize model code manually. Furthermore, 
parallelized models also facilitate distributed real-time simulations (e.g., of 



76    An Overview Of the SimwOrld Agent-BASed grid experimentAtiOn SyStem 

mixed live–virtual–constructive environments) that would otherwise not be 
able to run in real time.

4.5.2  Integrated Data Management

A large amount of data can be produced by even simple agent-based models. 
For example, models created by Scheutz et al. (2010) produced hundreds of 
gigabytes even though each model run finished within only a fraction of a 
second. In such cases, it is not possible to store simulation data distributed 
over millions of files in the regular file system (e.g., we have seen simulations 
produce more result files than a directory could hold given the file system 
restrictions of the operating system). Rather, data need to be automatically 
inserted in a database in a way that aids efficient data access. SWAGES auto-
matically creates a database based on the initial experiment setup and inserts 
simulation results in an organized way into tables that can subsequently be 
combined using Structured Query Language queries. Moreover, since the 
database can efficiently access large data sets, it is used to preprocess the data 
for real-time interactive visualizations. The immediate availability of visualiza-
tions (if only on sparse data) lets modelers anticipate results and possibly 
correct simulation setups early on (e.g., if the explored region of the space is 
not interesting or if the results are counterintuitive) rather than wasting many 
expensive compute cycles on completing the entire simulation run.

4.5.3  Automatic Error Detection and Recovery

SWAGES comprises several levels of error detection and recovery. At the 
infrastructure level, ADE provides component supervision, component moni-
toring, and component restarting in case components fail or crash (for core 
SWAGES components as well as custom simulation components). Moreover, 
at the SWAGES level, simulation monitoring, supervision, checkpointing, and 
restarts guarantee that (eventually) scheduled simulations will finish. This 
includes mechanisms for SWAGES itself to become “dormant” if no host is 
available (i.e., the scheduler will save its state to disk and schedule a special 
shell script for execution that will be able to resume the system). At the simu-
lation client level, error recovery comprises restarting all parallelized clients 
if any errors prevent a parallelized simulation from finishing. Finally, advanced 
notification mechanisms are available at each level to inform operators or 
users about the state of the system at any given time (e.g., through the ADE-
GUI or through a Web-based user interface).

4.5.4  SWAGES Compared to Other Frameworks

SWAGES shares several features with other grid middleware systems such as 
Berkley Open Infrastructure for Network Computing (BOINC), Condor, or 
QosCosGrid. For example, BOINC (Anderson, 2004) also supports the distri-



diScuSSiOn    77

bution of parameters and input files from a centralized server to client applica-
tions running on remote hosts. Architecturally, there is a similarity between 
the BOINC manager application and a SWAGES SimClient in that they both 
broker communication back to the server and execute the client-side simula-
tion. Furthermore, the corresponding BOINC server-side feeder application 
responsible for providing initialization information to the client simulation can 
be likened to the role provided by the SWAGES server-side scheduler  
and simulation manager. In SWAGES, the simulation manager fills the addi-
tional function of overseeing all communication with its associated SimClient, 
whereas in BOINC, there are a series of independent services responsible for 
these interactions (i.e., the respective feeders, validators, and assimilators). 
Also, similar to other batch submission systems, SWAGES handles distribution 
of work across a series of available nodes, and like Condor (Bent, 2005) and 
BOINC, SWAGES is sensitive to the usage availability of the processing  
host. SWAGES also shares features with QosCosGrid ProActive. Both are 
Java-based grid middleware systems and support the parallel distribution of 
simulation (Kravtsov et al., 2008). Additionally, the ability of QosCosGrid to 
utilize systems crossing security domains (Choppy et al., 2009) is shared by 
SWAGES. SWAGES can automatically establish a secure shell tunnel for 
systems behind firewalls and permits the use of either shared or system-unique 
access credentials when establishing these connections. Furthermore, both 
systems support an XML markup structure for job submission but differ in 
their implementation: QosCosGrid’s QCG Job Profile supports a broader 
range of simulation execution types, while SWAGES is a targeted system for 
large-scale experimentation and therefore has specialized features to support 
its workflow.

However, unlike most other popular grid systems, SWAGES supports some 
features not commonly found elsewhere. SWAGES has been tailored to 
natively support experimentation through integrated parameter sweep mecha-
nisms. This feature, coupled with a Web-based submission capability, makes 
SWAGES very easy for a modeler to use. Furthermore, SWAGES supports 
the unique capability of being able to dynamically parallelize a multiagent 
simulation at the client level across a series of hosts. While some extensions 
to existing simulations add support for distributed computing (e.g., HLA-
RePast) (Minson and Theodoropoulos, 2004), which uses high-level architec-
ture (HLA) to distribute simulations based on the RePast toolkit (Collier, 
2001), the distribution is not automatic and does not provide advanced dis-
tributed discrete-event scheduling that is found in SWAGES. Furthermore, 
SWAGES modelers do not have to include any provisions for parallelization 
in their code. Simply adding the keyword “parallelize” to the experimental 
setup definition is sufficient for SWAGES to attempt parallelization of simula-
tions whenever possible based on the available computational resources.

SWAGES’s fine-grained parallelization and asynchronous scheduling can 
lead to a much better use of a large array of computational resources when 
individual simulations are extremely computationally intensive.



78    An Overview Of the SimwOrld Agent-BASed grid experimentAtiOn SyStem 

4.6  CONCLUSIONS

In this chapter, we provided an overview of the latest version of SWAGES. 
Many attributes of SWAGES make it an easy system to install and use from 
a modeler’s perspective:

• No preinstalled components are required (only secure shell access).
• No fixed pool of compute nodes is required (SWAGES dynamically 

adjusts to the pool of available hosts in the grid environment).
• Simulation supervision and recovery mechanisms are included.
• Simulation experiments can be easily defined through a Web-based user 

interface, which also allows the modeler to look at results and data visu-
alizations as data become available.

And since SWAGES is now implemented in ADE, it provides an open 
interface that facilitates easy interconnections with other platforms and com-
ponents, and thus enables easy extensions of SWAGES functionality. In par-
ticular, it inherits the flexibility of ADE to use any other component 
implemented in ADE. For example, existing natural language components 
(developed in the context of a distributed robotic architecture, DIARC) could 
be used for user interactions, or action script interpreters for controlling physi-
cal agents could be used as scripting engines. Moreover, SWAGES can be 
easily extended by adding new ADE components based on the standard inter-
face mechanisms provided by ADE (even closed-source commercial off-the-
shelf software could be wrapped as ADE components and integrated into the 
system). Finally, the new distributed architecture allows SWAGES to manage 
large-scale grid simulations that are not possible for a system with a monolithic 
single-server configuration.

REFERENCES

D. P. Anderson. BOINC: A system for public-resource computing and storage. In 
GRID’04: Proc. of the 5th IEEE/ACM Int’l Workshop on Grid Computing, pp. 4–10. 
IEEE Computer Society, 2004.

J. R. Anderson, D. Bothell, M. D. Byrne, et al. An integrated theory of the mind. 
Psychological Review, 111:1036–1060, 2004.

J. Bent. Data-driven batch scheduling. PhD thesis, University of Wisconsin, Madison, 
2005.

T. Boyer, M. Scheutz, and B. Bertenthal. Dissociating ideomotor and spatial compatibil-
ity. In Proc. of the 31st Annual Conference of Cognitive Science, 2009.

M. Charlot, G. de Fabritis, A. L. Lomana, et al. The QosCosGrid project: Quasi-
opportunistic supercomputing for complex systems simulations. Description of a 
general framework from different types of applications. In Proc. of IBERGRID 
2007, Santiago de Compostela, Spain, 2007.



referenceS    79

C. Choppy, O. Bertrand, and P. Carle. Coloured Petri nets for chronicle recognition. In 
F. Kordon and Y. Kermarrec, editors, Ada-Europe’09 Proc. of the 14th Ada-Europe 
Int’l Conference on Reliable Software Technologies, pp. 266–281, Berlin and 
Heidelberg: Springer-Verlag, 2009.

N. Collier. RePast: An extensible framework for agent simulation. Natural Resources 
and Environmental Issues, 8:17–21, 2001.

D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, 1979.

R. T. Fielding and R. N. Taylor. Principled design of modern Web architecture. ACM 
Transactions on Internet Technology (TOIT), 2(2):115–150, 2002.

K. A. Gluck, M. Scheutz, G. Gunzelmann, et al. Combinatorics meets processing power: 
Large-scale computational resources for BRIMS. In Proc. of the 16th Conference on 
Behavior Representation in Modeling and Simulation, pp. 73–83, 2007.

V. Kravtsov, A. Schuster, D. Carmeli, et al. Grid-enabling complex system applications 
with QosCosGrid: An architectural perspective. In Proc. of The Int’l Conference on 
Grid Computing and Applications (GCA’08), pp. 168–174, 2008.

R. Minson and G. Theodoropoulos. Distributing RePast agent-based simulations with 
HLA. In Proc. of the 2004 European Simulation Interoperability Workshop, 
Edinburgh, UK, 2004.

M. Peschl and M. Scheutz. Explicating the epistemological role of simulation in the 
development of theories of cognition. In Proc. of the 17th Int’l Colloquium on 
Cognitive Science, pp. 274–280. Institute for Logic, Cognition, Language and 
Information, The University of the Basque Country, 2001.

M. Scheutz. The evolution of simple affective states in multi-agent environments. In  
D. Cañamero, editor, Proc. of AAAI Fall Symposium, pp. 123–128, Falmouth, MA: 
AAAI Press, 2001.

M. Scheutz. ADE—steps towards a distributed development and runtime environment 
for complex robotic agent architectures. Applied Artificial Intelligence, 20(4–5):275–
304, 2006.

M. Scheutz. Model-based approaches to learning: Using systems models and simula-
tions to improve understanding and problem solving in complex domains. In  
P. Blumschein, W. Hung, and D. Jonassen, editors, Artificial Life Simulations–
Discovering Agent-Based Models, volume 4 of Modeling and Simulations for 
Learning and Instruction, Artificial Life Simulations–Discovering Agent-Based 
Models, Rotterdam: Sense Publisher, 2008.

M. Scheutz and B. Gibson. Visual attention and the semantics of space: Evidence for 
two forms of symbolic control. In Proc. of the 28th Annual Meeting Cognitive Science 
Society, Vancouver, British Columbia, Canada, 2006.

M. Scheutz and J. Harris. Adaptive scheduling algorithms for the dynamic distribution 
and parallel execution of spatial agent-based models. In F. Fernández de Vega and 
E. Cantú-Paz, editors, Parallel and Distributed Computational Intelligence, Volume 
269 of Studies in Computational Intelligence, pp. 207–233, Springer, 2010.

M. Scheutz, J. Harris, and S. Boyd. How to pick the right one: Investigating trade-offs 
among female mate choice strategies in tree frogs. In Proc. of the Simulation of 
Adaptive Behavior 2010, pp. 618–627, 2010.

M. Scheutz and P. Schermerhorn. The role of signaling action tendencies in conflict 
resolution. Journal of Artificial Societies and Social Simulation, 7(1), 2004.



80    An Overview Of the SimwOrld Agent-BASed grid experimentAtiOn SyStem 

M. Scheutz and P. Schermerhorn. Predicting population dynamics and evolutionary 
trajectories based on performance evaluations in alife simulations. In Proc. of 2005 
Genetic and Evolutionary Computation Conference, pp. 35–42, ACM Press, 2005.

M. Scheutz and P. Schermerhorn. Adaptive algorithms for the dynamic distribution and 
parallel execution of agent-based models. Journal of Parallel and Distributed 
Computing, 66(8):1037–1051, 2006.

M. Scheutz and P. Schermerhorn. The limited utility of communication in simple organ-
isms. In Artifical Life XI: Proc. of the 11th Int’l Conference, pp. 521–528, 2008.

M. Scheutz, P. Schermerhorn, and P. Bauer. The utility of heterogeneous swarms of 
simple UAVs with limited sensory capacity in detection and tracking tasks. In Proc. 
of 2005 IEEE Swarm Intelligence Symposium, pp. 257–264, Pasadena, CA: IEEE 
Computer Society Press, 2005.

M. Scheutz, P. Schermerhorn, R. Connaughton, et al. SWAGES—an extendable distrib-
uted experimentation system for large-scale agent-based alife simulations. In Proc. 
of Artificial Life X, pp. 412–419, 2006.

M. Scheutz, P. Schermerhorn, J. Kramer, et al. First steps toward natural human-like 
HRI. Autonomous Robots, 22(4):411–423, 2007.

A. Sloman and B. Logan. Building cognitively rich agents using the SIM_Agent toolkit. 
Communications of the ACM, 42(3):71–77, 1999.

J. S. Steinman. Discrete-event simulation and the event horizon. In PADS’94: Proc. of 
the 8th Workshop on Parallel and Distributed Simulation, pp. 39–49, New York: ACM 
Press, 1994.



Chapter 5
Repast HPC: A Platform 

for Large-Scale  
Agent-Based Modeling

Nicholson Collier and Michael North
Argonne National Laboratory, Argonne, IL, USA

5.1  INTRODUCTION

In the last decade, agent-based modeling and simulation (ABMS) has been 
successfully applied to a variety of domains, demonstrating the potential of 
this technique to advance science, engineering, and policy analysis (North and 
Macal, 2007). However, realizing the full potential of ABMS to find break-
through results in research areas such as social science and microbial biodi-
versity will surely require far greater computing capability than is available 
through current ABMS tools. The Repast for High Performance Computing 
(Repast HPC) project hopes to realize this potential by developing a next-
generation ABMS system explicitly focusing on large-scale distributed com-
puting platforms.

This chapter’s contribution is its detailed presentation of the implementa-
tion of Repast HPC as a useful and usable framework. Section 5.2 discusses 
agent simulation in general, providing a context for the more detailed discus-
sion of Repast HPC that follows. Section 5.3 describes the motivation for our 

81

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski, 
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



82    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

work and the limits of current attempts to increase the computational capacity 
of ABMS toolkits. Section 5.4 discusses the salient aspects of our existing 
Repast HPC toolkit that guide the development of Repast HPC. In Section 
5.5, we explore the parallelization of an ABMS in a more general way, and 
Section 5.6 describes the current implementation. Section 5.7 introduces an 
example Repast HPC social science “rumor” application, while Section 5.8 
presents a concluding discussion.

5.2  AGENT SIMULATION

ABMS is a method of computing the potential system-level consequences of 
the behaviors of sets of individuals (North and Macal, 2007). ABMS allows 
modelers to specify each agent’s individual behavioral rules, to describe the 
circumstances in which the individuals reside, and then to execute the rules to 
determine possible system results. Agents themselves are individually identifi-
able components that usually represent decision makers at some level. Agents 
are often capable of some level of learning or adaptation ranging from a 
simple parameter adjustment to the use of neural networks or genetic algo-
rithms. For more information on ABMS, see North and Macal (2007).

5.3  MOTIVATION AND RELATED WORK

The growing roster of successful ABMS applications demonstrates the enor-
mous potential of this technique. However, current implementations of ABMS 
tools do not currently focus on very rich models or high-performance comput-
ing platforms. Many recent efforts to increase the computational capacity of 
ABMS toolkits have focused on either simple parameter sweeps or the use of 
standardized but performance-limited technologies. In contrast, Repast HPC’s 
focus is on enabling distributed runs over multiple processes. In doing so, 
Repast HPC enables (1) massive individual runs, that is, runs containing a 
number of agents sufficient to overwhelm a single process; and (2) runs con-
taining relatively few complex agents where the computational complexity 
would overwhelm a single process. ABMS studies typically require the execu-
tion of many model runs to account for stochastic variation in model outputs 
as well as to explore the possible range of outcomes. These ensembles of runs 
are often organized into “embarrassingly parallel” parameter sweeps due to 
the way that the independence of the individual model runs allows them to 
be easily distributed over large numbers of processors on high-performance 
computers. Quite a few groups have developed tools such as Drone1 and OMD 
(Koehler and Tivnan, 2005) for performing such parameter sweeps on high-
performance computing systems. Unfortunately, many of the most interesting 

1 http://drone.sourceforge.net.

http://drone.sourceforge.net


motivation and Related WoRk    83

agent-based modeling problems, such as microbial biodiversity, the social-
aspects of climate change, and others yet to be developed, require extremely 
large individual model runs rather than large numbers of smaller model runs. 
The parameter sweep approach does not offer a solution to this need.

The need for extremely large individual model runs has led various research 
groups to employ existing standards such as high-level architecture (HLA)2 
and various kinds of Web services (Houari and Far, 2005). These widely used 
standards can be effective for their purposes, but they are not designed to work 
efficiently on extremely large computing platforms. This ultimately limits their 
ability to address the need for extremely large individual model runs. 
Unfortunately, attempts to introduce new distributed ABMS standards, such 
as the Foundation for Intelligent Physical Agents (FIPA) architecture specifi-
cations3 and KAoS (Bradshaw, 1996), have succumbed to the same problem. 
However, despite difficulties in efforts to leverage existing standards as well 
as the more common focus on large numbers of relatively small model runs, 
a few groups have developed tools and frameworks for distributing large 
numbers of agents in a single model across a large number of processors. 
Deissenberg, van der Hoog, and Dawid’s EURACE project (Deissenberg and 
Hoog, 2009) attempts to construct an agent-based model of the European 
economy with a very large (up to approximately 107) population of agents. 
Agent-based computational economics (ACE) is a fertile area of research, and 
while it is important to note that the map (i.e., the model) is not (and need 
not be) territory, larger models are needed in order to explore the complexity 
and scope of an actual economy.

EURACE will be implemented using the Flexible Large-Scale Agent 
Modeling Environment (FLAME). FLAME’s origins are in the large-scale 
simulation of biological cell growth. Each agent is modeled as a “Stream 
X-Machine” (Laycock, 1993). A Stream X-Machine is a finite state machine 
consisting of a set of finite states, transition functions, and input and output 
messages. The state of a Stream X-Machine is determined by its internal 
memory. For example, the memory may contain variables such as an ID, and 
x and y positions (Deissenberg and Hoog, 2009). Agents communicate by 
means of messages, and their internal state is modified over time by transition 
functions that themselves may incorporate input messages and produce output 
messages. This representation of agents as Stream X-Machines is similar to 
Repast’s representation of agents as objects, the internal state of which is 
captured by fields, and the behavior of which is modeled by methods (see next 
discussion). It is unclear, though, how EURACE/FLAME implements topo-
logical (network, spatial, etc.) relations between agents other than via internal 
memory variables. In contrast, Repast uses more flexible contexts and projec-
tions (see next discussion).

3 http://www.fipa.org.

2 The SISC’s IEEE Standard for Modeling and Simulation (M&S) High Level Architecture 
(HLA)—Framework and Rules.

http://www.fipa.org


84    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

In common with other large-scale agent simulation platforms, including 
Repast, EURACE leverages the fact that much agent communication is local. 
By clustering “neighboring” agents on the same process, costly interprocess 
communication can be reduced. Here “neighbor” refers to agents within each 
others’ sphere of influence. Thus, an agent may be a network neighbor of an 
agent whose simulated spatial location is much further away. Of course, there 
are complications with this approach in that it may not always be possible to 
arrange agents in a process-compatible way. For example, an agent may need 
to participate in a network whose other members’ simulated spatial location 
is not architecturally local to that agent. Nevertheless, this principle of distrib-
uting agents across processes according to neighborhood or sphere of influ-
ence is often efficient and is common to agent simulation platforms.

The SimWorld Agent-Based Grid Experimentation System (SWAGES) 
(Scheutz et al., 2006) platform provides automatic parallelization via its 
SimWorld component. The automatic parallelization algorithm uses spatial 
information from the simulation to calculate agents’ spheres of influence and 
to distribute the agents across processes accordingly. However, such automatic 
parallelization as described in Scheutz et al. (2006) works only with explicitly 
spatial simulations rather than with other agent environment topologies.

SWAGES itself is composed of both client and server components and runs 
on both fixed and dynamic clusters of machines. Most of the server compo-
nents, running on a single host, manage various aspects of the distributed 
simulation infrastructure, while the component that manages clients most 
directly represents the remote simulation and stores the shared simulation 
state. SWAGES provides an integrated platform for distributed agent-based 
simulation including data collection and so forth, but unlike Repast HPC, 
SWAGES is not designed to run on massively parallel machines such as IBM’s 
Blue Gene. Agent implementation must be done in the Poplog programming 
languages (i.e., Pop11, Prolog, ML, Scheme, C-Lisp) rather than in more 
common languages such as C++ (used by Repast HPC). Kwok and Chow 
(2002), although not working in a strictly parallel context, emphasize the 
importance of proximity and “sphere of influence” with respect to load balanc-
ing. Their concern is load balancing for distributed multiagent computing. 
Agents in this case are more or less autonomous actors performing some task 
on behalf of an end user. For example, agents may be deployed to locate the 
lowest price of some commodity in a financial market. In this case, the agents 
can be thought of as “brokers” and the interaction between them as an 
exchange of “services.” Their Comet load balancing algorithm uses a “credit”-
based model for managing the distribution of agents among a cluster of 
machines. Each agent is dynamically assigned a credit score based on a variety 
of factors, among which are the computational workload and the proximity of 
the agents with which the scored agent communicates. The idea is that moving 
agents off of a process that contains the agents with which it communicates 
will adversely affect the efficiency of the system. Although the algorithmic 
work of Kwok and Chow (2002) provides avenues of investigation for Repast 



motivation and Related WoRk    85

HPC’s load balancing, it differs significantly. It is not concerned with very large 
numbers of agents, and its notion of agents and an agent simulation environ-
ment obviously differs.

In a more strictly parallel context, Oguara et al. (2006) also utilize the 
sphere of influence notion, describing an adaptive load management mecha-
nism for managing shared state, the goal of which is to minimize the cost of 
accessing the shared state while balancing the cost of managing, migrating, and 
so on, of the shared state. The cost is minimized by decomposing the shared 
state according to a sphere of influence and by distributing it so that the shared 
state is as local as possible to the agents that access it most frequently. The 
benefits of this minimization are balanced relative to the computational load 
of actually accomplishing it. Oguara et al. (2006) explore the mechanism using 
the parallel discrete-event simulation–multiagent system (PDES-MAS) frame-
work. PDES-MAS represents agents as an agent logical process. Agent logical 
processes have both private internal state and public shared state. The shared 
state is modeled as a set of variables. Any operation on the shared state (i.e., 
reading or writing) is a time-stamped event. The sphere of influence of an 
event is the set of shared state variables accessed by that event. Given the time 
stamp, the frequency of shared state access can be calculated.

PDES-MAS also contains communication logical processes that manage 
the shared state. Communication logical processes are organized as a tree 
whose branches terminate in the agent logical processes. The shared state is 
distributed and redistributed among the communication logical process tree 
nodes as the shared state variable migration algorithm is run. When an agent 
accesses the shared state, that request is routed through the tree and is pro-
cessed by the communication logical process nodes. The history of this access 
is recorded and the shared state migration algorithm evaluates the cost of 
access in order to determine when and how the shared state should be migrated. 
Additional work is done to avoid bottlenecks (i.e., concentrating too much 
shared state in too few communication logical processes) as well as to balance 
the computational cost of migration.

As compelling as the contribution of Oguara et al. (2006) is, it does not 
provide a full agent simulation package, lacking such things as topology (grid, 
network, etc.) management, data collection, and so on, that Repast HPC con-
tains. We would in the future like to leverage their work on the efficient man-
agement of shared state. The object-oriented nature of Repast HPC’s agents 
makes such externalization of shared state much easier than it might otherwise 
be. Furthermore, much shared state is the agents’ environment as represented 
by topologies such as grids and networks. Repast HPC externalizes these 
topologies in separate projection objects, making their management in a dis-
tributed context much easier.

Massaioli et al. (2005) take a different approach to the problems of shared 
state. After experimenting with Message Passing Interface (MPI)-based  
agent simulations and deciding that the overhead of communicating and syn-
chronizing shared state was too high, Massaioli and his colleagues explore a 



86    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

shared-memory OpenMP-based approach. The majority of their paper 
(Massaioli et al., 2005) then evaluates the efficiency of various OpenMP idioms 
in parallelizing typical agent-based simulation structures. In particular, they 
address optimizing the iteration and evaluation of non-fixed-length structures 
such as linked lists of pointers. OpenMP is very good at processing the ele-
ments of fixed-length arrays in parallel, and Massaioli et al. (2005) investigate 
how to achieve a similar performance over linked lists of pointers. Although 
they do highlight issues of sharing and synchronizing states via MPI, we believe 
a properly architected platform (of which Repast HPC is the first step) can 
avoid or at least minimize these issues. Indeed, the work of Oguara et al. (2006) 
illustrates how this might be done. Furthermore, an OpenMP-based approach 
assumes a shared-memory architecture that may be present within a processor 
node, but not necessarily across all the nodes. Other works, although not 
strictly focusing on the large-scale execution of ABMS applications, explore 
the related area of parallel discrete-event simulation (PDES) (Fujimoto, 1990, 
2000). Such work typically focuses on parallel event synchronization where 
logical processes communicate and synchronize with each other through time-
stamped events. Three approaches are commonly used: conservative, optimis-
tic, and mixed mode (Perumulla, 2006, 2007). The conservative approach 
blocks the execution of the process, ensuring the correct ordering of simulation 
events (Chandy and Misra, 1979, 1981). The optimistic approach avoids block-
ing but must compensate when events have been processed in the incorrect 
order. The Time Warp operating system is the preeminent example of this 
approach (Jefferson, 1985; Jefferson et al., 1987). Mixed mode combines the 
previous two (see, e.g., Perumulla [2005] and Jha and Bagrodia [1994]). The 
trio of Sharks World papers (Nicol and Riffe, 1990; Presley et al., 1990) explores 
the application of these approaches to the Sharks World simulation (sharks 
eating and fish swimming in a toroidal world). The scalability of these 
approaches to more recent high-performance computing platforms such as 
IBM’s Blue Gene is discussed by Perumulla (2007), where he demonstrates 
scalability to over 10,000 CPUs.

Perumalla’s microkernel for parallel and distributed simulation, known as 
“μsik” (Perumulla, 2005, 2007) provides efficient PDES time scheduling. The 
correctness of simulation results requires that events are executed such that 
“global time-stamp order” execution is preserved. In essence, no process 
should execute events with time stamps less than its current time stamp, at 
least without compensation as in the optimistic approach described earlier. 
Doing this efficiently requires that global parallel synchronization must be fast.

The μsik microkernel (Perumulla, 2005, 2007) optimizes execution effi-
ciency by minimizing the costs of rollback support, using a fast scalable algo-
rithm for global virtual time (GVT) computation, and by minimizing the cost 
of fossil (i.e., unnecessary state and event history) collection. By memory 
reduction techniques such as employing reverse computation for rollback 
rather than state saving, significant improvements were achieved. Perumulla 
(2007) also illustrates how key algorithms, such as the GVT computation, scale 



motivation and Related WoRk    87

effectively to 104 processors without significant inefficiencies. Memory reduc-
tion is also helped by μsik’s fast logarithmic fossil collection. With respect to 
event scheduling, Repast HPC uses a distributed discrete-event scheduler that 
is, at least in the current implementation, tightly synchronized across processes. 
In this, it has more in common with conservative PDES synchronization algo-
rithms as discussed earlier (Chandy and Misra, 1979, 1981). Peramulla (2005, 
2007) illustrates well the complexities and concomitant performance payoffs 
associated with more sophisticated scheduling. The initial implementation of 
the Repast HPC scheduler avoids such complexities but leaves room for 
implementing more advanced parallel scheduling algorithms in the future. 
Lastly, although μsik does provide sophisticated PDES support, unlike Repast 
HPC, it does not provide the additional services needed for agent modeling 
such as topology management, data logging, and so forth.

Like Perumalla (2005, 2007), Bauer et al. (2009) implement and test efficient 
discrete time scheduling. In particular, they demonstrate scalable performance 
of a Time Warp-based simulator using reverse computation for rollback. Their 
results show effective scaling up to 32,768 processors on an IBM Blue Gene/L 
and up to 65,536 processors on a Blue Gene/P. They attribute the ability to 
scale to their message/network management algorithms that are tuned to 
leverage Blue Gene’s high-performance asynchronous message capabilities. 
Their implementation is based on ROSS: Rensselear’s Optimistic Simulation 
System (Carothers et al., 2002).

As in the case of Perumalla, Bauer et al. (2009) focus on PDES optimization 
and experimentation and unlike our work, they do not support the additional 
services needed for agent modeling such as topology management, data 
logging, and so forth. In addition, while they leverage Blue Gene’s message 
capabilities to achieve their efficiencies, Repast HPC aims at more general 
applicability. Notwithstanding these considerations, we hope to benefit from 
their work in the future in implementing more sophisticated parallel schedul-
ing algorithms.

Karimabadi et al. (2006) study PDES for selected classes of grid models, in 
particular, hybrid models of electromagnetism. Their basic strategy is to use 
an approach similar to lazy program evaluation (Hudak, 1989). In other words, 
they set up their PDES to only execute an event when the consequences of 
that event are needed by some other event. Implementing their algorithm 
using Perumalla’s μsik (Perumulla, 2005) engine, they report a greater than 
100-fold performance improvement over traditional PDES. Unfortunately, 
their algorithm is limited in the kinds of events it can support. Furthermore, 
like Perumalla’s μsik (Perumulla, 2005), they do not provide the additional 
services needed for agent modeling.

Some researchers such as D’Souza and colleagues (D’Souza et al., 2007; 
Lysenko and D’Souza, 2008) have studied the use of graphical processing units 
(GPUs) either individually or in large groups. In general, substantial speedups 
are found, but at the expense of a substantial reduction in modeling flexibility. 
GPUs are designed to rapidly and repeatedly execute small sets of instructions 



88    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

using limited instruction sets. This allows the underlying GPU hardware to be 
highly optimized for both speed and production cost. Efficient use of GPUs 
implies that the executing agents will tend to run the fastest when they have 
simple behaviors drawn from a short shared list of options.

This chapter’s contribution is its detailed presentation of the implementa-
tion of Repast HPC, the first complete ABMS platform developed explicitly 
for large-scale distributed computing systems. Our work on Repast HPC pro-
vides an integrated ABMS toolkit targeted at massive individual runs on high-
performance computing platforms. In this, it differs from tools that enable 
distributed parameter sweeps over many individual runs. We leverage the 
related work done in distributed ABMS and PDES and hope to take more 
advantage of it in the future, but our focus is on a working integrated toolkit 
that provides the typical ABMS components specialized for a massively paral-
lel environment. In addition, using standards such as MPI and C++, the code 
itself is compatible across multiple computing platforms.

Related work and how it compares to this chapter and Repast HPC is sum-
marized next.

Belding (Drone)

• Citation: Koehler and Tivnan (2005)
• Summary: distributed parameter sweeps of relatively small runs
• How Repast HPC Differs: support for very large individual model runs

IEEE, FIPA

• Citation: Houari and Far (2005) and Bradshaw (1996)
• Summary: standards for model interoperability and distribution
• How Repast HPC Differs: actual working system for very large-sized 

model runs

EURACE

• Citation: Deissenberg and Hoog (2009)
• Summary: extremely large-scale distributed model of European economy
• How Repast HPC Differs: flexible and generic components based on 

contexts and projections

FLAME

• Citation: http://www.flame.ac.uk
• Summary: flexible large-scale agent modeling architecture based on 

Stream X-Machines
• How Repast HPC Differs: flexible and generic components based on 

contexts and projections using standard OO-techniques

http://www.flame.ac.uk


motivation and Related WoRk    89

SWAGES

• Citation: Scheutz et al. (2006)
• Summary: distributed simulation systems for large-scale ABMS
• How Repast HPC Differs: supports parallelization of more than just 

spatial simulations

Load Balancing

• Citation: Kwok and Chow (2002)
• Summary: load balancing for distributed multiagent computing
• How Repast HPC Differs: supports very large-sized distribution and 

employs a different although related notion of an agent

PDES-MAS

• Citation: Oguara et al. (2006)
• Summary: explores adaptive load management for managing shared state
• How Repast HPC Differs: less sophisticated shared state management 

but working support for all the typical agent simulation components

OpenMP for Agent-Based Simulation

• Citation: Massaioli et al. (2005)
• Summary: explores and evaluates the use of OpenMP in parallelizing 

agent-based simulation structures
• How Repast HPC Differs: uses MPI and provides a full set of working 

ABMS components.

PDES Scheduling in Sharks World

• Citation: Bagrodia and Liao (1990), Presley et al. (1990), and Nicol and 
Riffe (1990)

• Summary: explore PDES scheduling (conservative, optimistic, and mixed 
mode) in the context of the Sharks World simulation

• How Repast HPC Differs: simpler scheduling but working support for 
all the typical agent simulation components

μsik PDES Kernel

• Citation: Perumulla (2005)
• Summary: describes how the μsik PDES kernel provides efficient event 

scheduling



90    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

• How Repast HPC Differs: simpler scheduling but working support for 
all the typical agent simulation components

μsik Scalability

• Citation: Perumulla (2007)
• Summary: describes how μsik scales to very large sizes
• How Repast HPC Differs: simpler scheduling but working support for 

all the typical agent simulation components on high-performance com-
puting machines.

Lazy PDES Event Execution

• Citation: Karimabadi et al. (2006)
• Summary: explores the use of lazy PDES event execution using the μsik 

kernel
• How Repast HPC Differs: simpler scheduling but working support for 

all the typical agent simulation components

GPUs for ABMS

• Citation: D’Souza et al. (2007) and Lysenko and D’Souza (2008)
• Summary: explores the use of GPU and GPU-based programming as a 

platform for ABMS
• How Repast HPC Differs: much more flexible programming model

5.4  FROM REPAST S TO REPAST HPC

Repast is a widely used ABMS toolkit.4 Multiple versions of the toolkit have 
been created, the latest of which is Repast Simphony for Java (Repast SJ). 
Repast SJ is a pure Java ABMS platform whose architectural design is based 
on central principles important to agent modeling. These principles combine 
findings from many years of ABMS toolkit development and from experience 
applying the ABMS toolkits to specific applications. More details on Repast 
Simphony are reported by North et al. (2007).

The parallel C++ implementation of Repast (Repast HPC) attempts to 
preserve the salient features of Repast SJ while adapting them for parallel 
computation in C++. More specifically,

• agents are naturally represented as objects (in the object-oriented pro-
gramming sense);

4 http://repast.sourceforge.net.

http://repast.sourceforge.net


fRom Repast s to Repast HpC    91

• scheduling is flexible and dynamic; and
• implementation should be driven by modeling rather than framework 

requirements; model components (e.g., agents) should be “plain old 
objects” as far as possible.

These requirements are considered in detail in the remainder of this section.

5.4.1  Agents as Objects

An agent’s internal state (e.g., its age and wealth) is easily represented in an 
object’s fields while the agent’s behavior (e.g., eating, aging, and acquiring and 
spending wealth) is modeled using an object’s methods. Implementing agents 
as objects is most easily done using an object-oriented language. Consequently, 
Repast HPC is implemented in C++. Using C++ also allows us to take advan-
tage of the Standard Template Library (STL) as well as sophisticated third-
party libraries such as Boost.5

5.4.2  Scheduling

Repast Simphony simulations are driven by a discrete-event scheduler. Events 
themselves are scheduled to occur at a particular tick. Ticks do not necessarily 
represent clock time but rather the priority of its associated event. Ticks deter-
mine the order in which events occur with respect to each other. For example, 
if event A is scheduled at tick 3 and event B at tick 6, event A will occur before 
event B. Assuming nothing is scheduled at the intervening ticks, A will be 
immediately followed by B. There is no inherent notion of B occurring after 
a duration of three ticks. Of course, ticks can and are often given some tem-
poral significance through the model implementation. A traffic simulation, for 
example, may move the traffic forward 30 seconds for each tick. A floating 
point tick, together with the ability to order the priority of events scheduled 
for the same tick, provides for flexible scheduling. In addition, events can be 
scheduled dynamically on the fly such that the execution of an event may 
schedule further events at that same tick, or some future tick.

5.4.3  Modeling

Repast Simphony attempts to separate framework concerns from modeling 
concerns by eliminating implementation requirements such as interfaces or 
abstract base classes on the model side. Agents need not implement any inter-
faces or extend any parent classes in order to participate in the framework. 
Historically, agent-based models have maintained a tight coupling between 
individuals, their behaviors, and the space in which they interact. As a result, 

5 http://www.boost.org.

http://www.boost.org


92    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

many models have been designed in a way that limits their ability to express 
behaviors and interactions. For example, an agent may have to implement a 
network node interface in order to participate as a node in a network, or a 
grid element interface in order to participate in a grid, or both to participate 
in both a network and a grid. Such coupling of the agent to the space in which 
it participates reduces flexibility and reuse, adds an undue implementation 
burden, and diverts focus from the actual model.

Repast Simphony’s approach avoids these problems and encourages flexi-
bility and reusability of components and models through the use of contexts 
and projections. The context is a simple container based on set semantics. Any 
type of object can be put into a context, with the simple caveat that only one 
instance of any given object can be contained by the context. From a modeling 
perspective, the context represents a population of agents. The agents in a 
context are the population of a model. However, the context does not inher-
ently provide any mechanism for interaction between the agents. Projections 
take the population as defined in a context and impose a new structure on it. 
The structure defines and imposes relationships on the population using the 
semantics defined in the projection. Projections have a many-to-one relation-
ship with contexts. Each context can have an arbitrary number of projections 
associated with it. Projections are designed to be agnostic with respect to the 
agents to which projections provide structure. Actual projections are such 
things as a network that allows agents to form network-type relations with 
each other or a grid-type space where each agent is located in a matrix-type 
space (Howe et al., 2006).

Repast HPC attempts to preserve these features and principles as far as 
possible. Repast HPC has additional goals, driven by ease of use, namely,

• Users of the framework should be able to work with projections and 
agents as such, rather than more typical parallel friendly types: arrays, 
primitives, and so forth.

• Similarly, the details of parallelization (e.g., MPI-related calls) should be 
hidden from the client programmer (i.e., the user) as much as possible.

5.5  PARALLELISM

In parallelizing Repast for large-scale distributed platforms, our focus is on 
parallelizing the simulation as a whole rather than enabling the parallelization 
of individual agent behaviors across processors.6 The expectation, then, is that 
the typical simulation will contain either relatively few heavy, computationally 
complex agents per process or a multitude of lighter-weight agents per process. 
Processes communicate, share agents, and so forth using the MPI.

6 The latter could be done, of course, either through a model-specific scheme or by conceptualizing 
the agent behavior as kind of pseudosimulation and by using Repast HPC’s functionality.





94    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

 std::size_t hash;
 . . . 
};

An AgentId is immutable with respect to its id_, startProc_ as well as 
agentType_ fields. The agentType_ field should identify the type of agent. 
For example, in a predator prey model, a constant value of 0 might identify 
the predator agents, and a value of 1 might identify the prey agents. The field 
startProc_ identifies the process rank on which the agent with this AgentId 
was created. Lastly, id_ is used to distinguish between agents of the same type 
created on the same process. Prey 2 created on process 3 is distinguished  
from prey 3 created on process 3, for example. Taken together, these three 
values should uniquely identify an agent across the entire simulation. The  
hash field is also immutable and is calculated based on the id_, startProc_ 
and agentType_ fields and is used as a key value when using agent 
objects in hash-based maps. The last field, currentProc_, is the process 
where the agent currently resides. Initially, this is the same as the agent’s start-
ing process (startProc_) but may change if the agent moves between 
processes.

Every agent in the simulation must implement a getAgentId method that 
returns the AgentId for that agent. Using the AgentId, processes can request 
specific agents from the process where the agent resides and can then update 
their local copy with the canonical version. Similarly, if an agent dies and is 
removed from the simulation, the AgentId of the dead agent is sent to the 
relevant processes, allowing them to remove the agent from their contexts, 
projections, and so on. The actual process of requesting and synchronizing 
agents is handled by the RepastProcess component that is further discussed 
in greater detail.

5.6  IMPLEMENTATION

To implement its core parallelism, Repast HPC uses the Boost.MPI library7 
and the MPI C++ API where necessary. Boost.MPI applies a more modern 
C++ interface to the MPI C and C++ API. Boost.MPI provides better support 
for modern C++ development styles and includes complete support for user-
defined data types and C++ Standard Library types. The use of Boost.MPI is 
also an advantage for the client programmer, especially in the creation of MPI 
data types for user-defined data types such as agents. This helps to keep the 
focus on modeling concerns rather than on framework requirements.

The remainder of this section discusses the core components of Repast 
HPC and their implementation in more detail.

7 http://www.boost.org/docs/libs/1_39/doc/html/mpi.html.

http://www.boost.org/docs/libs/1_39/doc/html/mpi.html


implementation    95

5.6.1  Context

The context component is a simple container based on set semantics that 
encapsulates an agent population. The equivalence of elements is determined 
by the AgentId. Each process has at least one context to which local and 
nonlocal agents are added and removed. The context component provides 
iterator implementations that can be used to iterate over all the agents in the 
context or only those that are local to the current process. Projections (Grids 
and Networks) are also contained by the context such that any agent added 
to a context becomes a member of the associated projections (e.g., occupying 
a grid cell or becoming a node in a network).

5.6.2  RepastProcess

The RepastProcess component encapsulates a process and manages inter-
process communication and simulation state synchronization. Implemented as 
a singleton together with related template functions, a single RepastProcess 
exists per process. The RepastProcess exposes such data as a process rank 
and the total number of processes. Using the RepastProcess component, a 
client programmer can request copies of agents from other processes and can 
synchronize the state and status (i.e., alive, dead, or migrated) of requested 
agents.

AgentRequest request(myRank);
// get 10 random agents from other process
for (int i = 0; i < 10; i++) {
 AgentId id = createRandomId();
 request.addRequest(id);
}
repast::requestAgents<AgentContent>(provider, receiver);

This piece of code illustrates a request for agents. Requests are made using 
the AgentRequest object to which the IDs of the requested agents are 
added. This request is then passed to a template function, requestAgents. 
The function is specialized to provide and receive the type AgentContent. 
The provider and receiver, which are themselves type parameters, are respon-
sible for providing the content to the requesting process and for receiving the 
requested content. The user is responsible for coding the provider and the 
receiver, but this requires only the implementation of a single method each. 
The provider typically retrieves the content from agents in the context using 
the IDs of the requested agents, while the receiver typically creates the agents 
from the requested content and then adds them to the context.8

8 Future work should capture this typical case such that the client programmer would only have 
to provide the provider and receiver if he or she needs more than simple add and retrieve from 
the context.



96    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

The relevant dynamic content or state of an agent can typically be described 
by a struct or class of primitive types. The client programmer specializes the 
requestAgents method for this struct or class (e.g., the AgentContent 
type in the above-mentioned example). More importantly, Boost.MPI trans-
parently constructs the necessary MPI data types for such a struct or class 
and can efficiently pass (send, recv, broadcast, etc.) them among pro-
cesses. The amount of work that the client programmer needs to do is fairly 
trivial; most of the work is done by the RepastProcess component and 
Boost.MPI.

Implementation-wise, the sending and receiving of agent content using the 
RepastProcess component works as follows: Nonroot processes send their 
requests to the root process (the process with rank 0). The root process sorts 
these requests as well as any of its own by the containing process, that is, by 
the process on which the requested agent resides. For example, if P1 requests 
Agent A from P2, P0 requests B from P2, and P3 requests C from P1, then P0 
(the root process) sorts these three requests into two lists: the agents requested 
from P2 (A and B) and the agents requested from P1 (C). The root process 
then sends these request lists to the process that can fulfill them. These pro-
cesses then fulfill the requests by extracting the content of the requested 
agents and then sending that content to those processes that initiated the 
request. Throughout this mechanism, RepastProcess tracks the agent 
content that it is importing from other processes and the agent content it is 
exporting to other processes. Synchronization of state and status is then easily 
done by sending and receiving the canonical state and status changes between 
the associated importing and exporting process pairs.

5.6.3  Scheduler

Repast HPC uses a distributed discrete-event scheduler that is, at least in the 
current implementation, tightly synchronized across processes. In this, it has 
more in common with conservative PDES synchronization algorithms as dis-
cussed earlier (Chandy and Misra, 1979, 1981). Earlier work on parallel simula-
tion demonstrates the effectiveness as well as the complexities of optimistic 
and mixed-mode scheduling (Jefferson et al., 1987; Jha and Bagrodia, 1994; 
Perumulla, 2005; Perumulla, 2007). The initial implementation of the Repast 
HPC scheduler avoids these complexities and leaves room for implementing 
more advanced parallel scheduling algorithms in the future.

MethodFunctor<NetworkSim>*
 mf = new MethodFunctor<NetworkSim> (this, 
&NetworkSim::step); scheduler.scheduleEvent(1, 1, mf);
. . .
scheduler.scheduleStop(100);



implementation    97

The scheduler schedules MethodFunctors, that is, method calls on objects, 
using the tick-based scheme described in Section 5.4. MethodFunctors can 
be scheduled to execute once at a particular tick or by starting at a particular 
tick and then repeating at a regular interval. The scheduler also has additional 
methods for scheduling simulation termination as well as methods for schedul-
ing events that should occur post-termination. These last events are particu-
larly useful for finishing data collection, cleaning up open resources, and so 
forth. The code mentioned earlier illustrates a typical piece of scheduling code. 
The step method on a NetworkSim object is scheduled to execute at tick 1 
and then every tick thereafter, and the simulation itself is scheduled to termi-
nate at tick 100.1.

The scheduler runs in a loop until the stop event is executed. At each itera-
tion of the loop, the scheduler determines the next tick that should be exe-
cuted, pops the events for that tick-off of a priority queue, and executes any 
MethodFunctors associated with those events. The scheduler synchronizes 
across processes when it determines the next tick to execute. Each individual 
scheduler on each process passes the next tick it will execute to an “all_reduce” 
call and receives the global minimum next tick as a result. If this global 
minimum is equal to the local next tick, then the local scheduler executes. 
Synchronization is thus twofold: (1) The “all_reduce” call is a barrier prevent-
ing individual processes from getting too far ahead or too far behind; (2) by 
only executing the global minimum tick, we insure that all processes are 
executing the same tick. This type of synchronization is, of course, restrictive 
and implies that each process is under a similar load and that the coherency 
of the simulation as a whole benefits from such synchronization. Future work 
will examine relaxing the synchronization through checkpointing, rollbacks, 
and so forth. This type of tight synchronization, however, does fit reasonably 
well with many types of currently implemented agent simulations.

5.6.4  Distributed Network

The distributed network component implements a network projection that is 
distributed over the processes in the simulation. Each process is responsible 
for the part of the network in which its local agents participate as nodes. 
However, these local agents may have network links to nonlocal agents (or 
rather copies of them as described earlier) and through them to those parts 
of the network on other processes. The distributed network provides typical 
ABMS network functionality: retrieving network node successors and prede-
cessors, creating and removing edges, and so forth.

The design of the distributed network is guided by the notion that  
each process should only see as much of the network as necessary for the 
behavior of the local agents. For example, if an agent’s behavior incorporates 
only its immediate network neighbors, then only these neighbors need be 
present on the local process. There is no need for a larger view of the network 



98    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

incorporating neighbors of neighbors, and other features. The extent of the 
larger network that is visible to a process is thus configurable by the user. In 
particular, the distributed network includes methods for creating complemen-
tary edges across processes as well as for mirroring the relevant linked parts 
of the larger network into an individual process.

The creation of complementary edges works much like the sharing of agents 
previously described. For example, Process 1 (P1) creates an edge between A1 
and B2 where B2 is a copy of an agent from Process 2 (P2). Initially, P2 has 
no knowledge of this edge until P1 informs P2, and P2 creates the comple-
mentary edge (A1  B2) on its copy of the network. As part of edge creation, 
the distributed network tracks those edges that require a complement to be 
created and the process on which they should be created. A list of these pro-
cesses is sent to the root process. The root process sorts these lists such that a 
list of processes from which to expect a complementary edge can be sent to 
each process. Each process then asynchronously sends and receives the com-
plementary edges. These edges are then incorporated into the local copy of 
the network. Copies of nonlocal agents may be received together with the edge 
(e.g., P2 receives a copy of A1, mentioned earlier), and these copies are then 
added to the local context as well as to the RepastProcess’ relevant import 
and export lists.

Acquiring additional parts of the network works in much the same way. 
Edges are sent and received, although the initial request is, of course, not for 
complementary edges but for additional nodes in the network.

5.6.5  Distributed Grid

The distributed grid projection implements a discrete grid where agents are 
located in a matrix-type space. It implements typical ABMS grid functionality: 
moving agents around the grid, retrieving grid occupants at particular loca-
tions, getting neighbors, and so forth. The grid is distributed over all processes, 
and each process is responsible for some particular subsection of the grid (see 
Fig. 5.2). The agents in that particular subsection are local to that process. Grids 
are typically used to define an interaction topology between agents such that 
agents in nearby cells interact with each other. In order to accommodate this 
usage, a buffer can be specified during grid creation. The buffer will contain 
nonlocal neighbors, that is, agents in neighboring grid subsections. Grid cre-
ation leverages MPI_Cart_create so that processes managing neighboring 
grid subsections can communicate efficiently.

The distributed grid also allows agents to move out of one grid subsection 
and into another. This entails migrating the agent from one process to another 
in order to minimize the nonlocal knowledge (and thus the synchronization 
overhead) that each process requires. The distributed grid works in conjunc-
tion with a RepastProcess to achieve this interprocess agent movement. 
Note that this can become quite involved if the agent or copies of the agent 
are referenced in other processes.



http://unidata.ucar.edu/software/netcdf


100    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

Repast HPC also implements a more generic logging framework along the 
lines of the popular Java Log4J library.10 The user defines appenders and 
loggers. Appenders determine where logged data can be written: stderr, 
stdout, or to a file(s). A logger combines one or more appenders and a 
logging level. Any data written to a logger with a level greater than or equal 
to the logger’s log level will then be time-stamped and written to that logger’s 
appenders. Repast HPC creates a default logger for each process that can be 
used to systematically log debug info, errors, and so forth.

5.6.7  Random Number Generation and Properties

Repast HPC provides centralized random number generation via a random 
singleton class. Random leverages Boost’s random number library, using its 
implementation of the Mersenne Twister (Matsumoto and Nishimura, 1998) 
for its pseudorandom number generator. Uniform, triangle, Cauchy, exponen-
tial, normal, and log normal distributions are available. Random is not distrib-
uted across processes, but rather, individual instances execute on individual 
processes. Our experience with Repast and agent simulation in general has 
illustrated the usefulness of a singleton-based random number implementa-
tion, especially with respect to replicating results. Repast HPC thus follows 
this model.

The random seed can be set either in the code itself or by using a simple 
properties file format. The canonical Repast HPC executable expects a -config 
option that names a properties file. Specific random number properties in that 
file are then used in the initialization of the random class. A properties file has 
a simple key = value format. An example of random number-related proper-
ties is

random.seed = 1
distribution.uni_0_4 = double_uniform, 0, 4
distribution.tri = triangle, 2, 5, 10

The random.seed property specifies the seed for the generator. If no seed 
is specified, then the current calendar time is used (i.e., the result of 
std::time(0)). Distributions can be created and labeled by specifying a 
distribution property. The keys for such properties begin with distribution 
followed by a “.” and then a name used to identify the distribution for later 
use. The value of the property describes the type of the distribution and any 
parameters it might take. For example, the piece of code starting with random.
seed = 1 creates a distribution named “tri.” It is a triangle distribution with 
a lower bound of 2, a most likely value of 5, and an upper bound of 10. This 
distribution can be used in the model by retrieving it by name (“tri”) from the 
Random class.

10 http://logging.apache.org.

http://logging.apache.org


example appliCation: RumoR spReading    101

In addition to providing easy random number configuration, properties and 
properties files also provide support for arbitrary key/value pairs. These can 
be parsed from the properties file itself or added at run time to a Properties 
object. The Properties class provides this functionality. The canonical main 
function used by a Repast HPC model will pass the properties file to the 
Properties class constructor and will then make this Properties 
object available to the model itself. Model parameters will typically be set in 
properties files, making it trivial to change a model’s parameters without 
recompilation.

5.7  EXAMPLE APPLICATION: RUMOR SPREADING

As a benchmark application and equally importantly to determine, if only 
informally, Repast HPC’s ease of use and how well modeling concerns are 
separated from framework concerns, we have written a simple rumor-spreading 
application. The application models the spread of a rumor through a net-
worked population. The simulation proceeds as follows. As part of initializa-
tion, some numbers of nodes are marked as rumor spreaders. At each iteration 
of the simulation, a random draw is made to determine if the neighbors of any 
rumor-spreading nodes have received the rumor. This draw is performed once 
for each neighbor. After all of the neighbors that can receive the rumor have 
been processed, the total number of nodes that have received the rumor is 
recorded. We hope that this initially simple model can become the basis for 
more thorough investigations of network topologies in related models, such 
as the spread of trends through a population, the role of “influencers” or 
trendsetters in such, and the spread of epidemics in general. The potential 
value of using such virtual “worlds” to generate data for testing analysis tech-
niques is documented by Zurell et al. (2010). In particular, they describe the 
role of virtual data in evaluating methods for data sampling, analysis, and 
modeling methods with respect to ecology and ecological models.

The network itself is created using the KE model for growing networks. 
Klemm and Egužluz (2002) demonstrated a model for creating networks that 
display the typical features of real-world networks: power law distribution of 
degree and linear preferential attachment of new links. More importantly, the 
KE model creates networks with degree distribution similar to the preferential 
attachment model of Barabási and Albert (1999) but also includes other 
network topology features more like those found in real computer networks.

The KE model generates the network as follows. As an initial condition, 
there is a fully connected network of m active nodes. A new node, i, is added 
to the network. An outgoing link is created between i and each of the active 
nodes. Each node j of the m active nodes thus receives exactly one incoming 
link. The new node i is added to the set of active nodes. One of the currently 
active nodes is then removed from the set of active nodes. The probability that 
a node is made inactive is inversely proportional to its current degree, ki:



102    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

 
P k

k
k

i

i
jj

( ) .=
∑

1
1  (5.1)

This is then repeated for each new node, i, that is to be added to the network 
(Briesemeister et al., 1998; Klemm and Eguíluz, 2002).

We have adapted this to the distributed context by sharing n number of 
nodes between processes. Prior to network creation, each process requests n 
nodes at random from 4 “adjacent” processes. Adjacency here is determined 
by a process rank, such that a process with rank n is adjacent to ranks n − 1, 
n − 2, n + 1, and n + 2. When adjacent ranks are less than 0 or greater than the 
number of processes—1, the adjacent ranks are determined by wrapping either 
to the end or to the beginning. For example, given a process total of 128, 
process 0 is adjacent to 126, 127, 1, and 2. After importing the additional nodes, 
each process then builds a KE-model network using these shared nodes, 
together with nodes local to that process. Once the network has been built on 
each process, complementary edges are generated such that the edges created 
between shared and local nodes are then themselves shared across the relevant 
processes. For example, an edge is created on process one (P1) creates an edge 
between two nodes where the first node resides on process two (P2). 
Complementary edge creation will then create the corresponding edges 
between the corresponding nodes on P2. The resulting network is intended to 
roughly model more densely connected clusters of friends integrated into 
larger clusters of clusters.

As the simulation runs, each process maintains a list of the nodes that have 
currently received the rumor (so-called rumored nodes). This list includes both 
local and nonlocal shared nodes. At each iteration of the simulation, we iterate 
through this list and attempt to pass on the rumor, via random draws, to the 
neighbors of these rumored nodes. These neighbors, however, must be local to 
the executing process in order for the rumor attempt to be made. This avoids 
any race conditions with respect to whether or not a node has received the 
rumor and the necessity for any potentially time-consuming resolution of 
conflicting state. The state of shared nodes is updated after processing the 
neighbors. Any change in the rumor state of nonlocal shared nodes is thus 
communicated among processes and the list of rumored nodes is updated to 
include any newly “rumored” nonlocal shared nodes. In this way, the integrity 
of the network with respect to spreading the rumor via cross-process links is 
preserved.

The simulation has the following parameters:

1. The name of the distribution to use when determining if a node receives 
the rumor, via a random draw

2. The probability of a node receiving the rumor
3. The initial node count



example appliCation: RumoR spReading    103

4. The value of m to use in creating the KE-model network
5. The value of n, specifying how many shared nodes should be used in the 

initial network, as described earlier
6. The initial number of rumored nodes—this value can be a constant or 

the name of a distribution from which the value is drawn

These parameters are contained in a Repast HPC properties file together 
with named distributions and an initial random seed. The seed is shared among 
all processes, allowing for repeatable results.

The implementation of the model, of course, uses the various components 
described previously, the RepastProcess, the distributed network, and so 
forth. Consequently, the nodes are modeled agents and the edges themselves 
are instances of the RepastEdge class. No doubt this thoroughly object-
oriented implementation imposes some overhead, but it does have significant 
advantages with respect to expanding and improving the model. For example, 
if the spread of a rumor between two nodes becomes dependent on the 
strength of the tie between them or on some property of the nodes themselves, 
then the changes to the code are easy to implement.

The code itself was developed on Mac OSX using Open MPI. Benchmark 
runs and additional testing were performed on an IBM Blue Gene/P 1028 
processor system hosted by Argonne National Laboratory’s Leadership 
Computing Facility. Blue Gene’s native compiler, bgxlc++, was used to compile 
the relevant parts of Boost and the Repast HPC code.

5.7.1  Performance Results

The model was run with the following parameters. The probability of a node 
receiving a rumor was set to 0.01, and the draw was made from a uniform 
distribution (0, 1). Ten nodes were marked as initial rumored nodes. The 
number of nodes n shared between adjacent processes was set to 40, and the 
KE model m parameter was set to 10. Each run iterated for 200 ticks (itera-
tions). Run times were measured for both initialization (agent creation, 
network setup, initial sharing of node, and edges) as well as the time to com-
plete 200 iterations.

Figure 5.3 illustrates the total run time (initialization plus the time to com-
plete 200 iterations) for varying network node counts grouped by process 
count. We can see a trade-off between the benefit of running smaller numbers 
of agents (network nodes) on each process and the cost of interprocess com-
munication. The total run time for a 100-k node network on 256 processes is 
less than all the other process counts for the same sized network. As the 
network node count increases, the advantages of running smaller numbers of 
nodes on each process increases and runs on a larger number of processes 
become progressively faster. The lack of perfect weak scaling is obvious.

This trade-off is obviously model dependent. Our sample model is not 
computationally intensive, and thus the advantages of a larger number of 



104    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

processors do not appear at lower numbers of agents. Models with more com-
putationally “thick” agents would presumably see a benefit with lower numbers 
of agents and equivalent numbers of processes. Similarly, models that require 
less interprocess communication would obviously be faster as well.

Figures 5.4 and 5.5 and Table 5.1 illustrate that the cause of the trade-off 
lies in the initialization of the model and less in its actual execution, that is, in 
the iteration and execution of the scheduled events. The initialization time for 
1024 process runs is nearly 4.50 times slower when running 100-k agents than 
the 128 process run, even though each individual process is initializing 8× less 
agents. As mentioned earlier, initialization consists in part of sharing agents 
between neighboring processes. In terms of the Repast HPC components, this 
sharing is initiated using AgentRequests as described in Section 5.6.2. 
AgentRequests are coordinated by a root process (process rank 0). This root 
process sequentially receives all the requests sent by all the requesting nonroot 
processes. The time spent in this send and receive increases as the process 
count increases: The loop is longer; there is ultimately more interprocess com-
munication and more requests for the root process to coordinate. Future work 
will investigate potential optimizations to the AgentRequests mechanism.

Absent the initialization overhead, the model and the Repast HPC compo-
nents scale reasonably well. In all but one case, a greater number of processes 
lead to faster run times.11 On average, twice as many processors for runs with 

Figure 5.3  total time by process count.

10,000

1000

100

T
o

ta
l T

im
e 

(s
ec

o
n

d
)

10

128 Processes 256 Processes 512 Processes 1024 Processes

1
100,000 500,000 1,000,000 5,000,000

# Network Nodes

10,000,000 50,000,000 100,000,000

11 The exception is the 100-k node run where 256 processes run 0.10 seconds faster than 512.



example appliCation: RumoR spReading    105

Figure 5.4  initialization time by process count.

1000

100

In
it

ia
liz

at
io

n
 T

im
e

10

128 Processes 256 Processes 512 Processes 1024 Processes

1
100,000 500,000 1,000,000 5,000,000

# Network Nodes

10,000,000 50,000,000 100,000,000

Figure 5.5  iteration time by process count.

10,000

1000

100

It
er

at
io

n
 T

im
e 

(s
ec

o
n

d
)

10

128 Processes 256 Processes 512 Processes 1024 Processes

1
100,000 500,000 1,000,000 5,000,000

# Network Nodes

10,000,000 50,000,000 100,000,000

the same number of nodes run 1.62 times as fast, with maximum increases of 
2.00 times and minimum of 0.90 times, still shy of perfect weak scaling. There 
is some very small overhead associated with data collection that increases 
slightly as the number of processes increases, but the variations in scaling and 
the lack of perfect weak scaling are most likely due to variations in the simu-
lated network configuration. The configuration will vary between model runs 



106    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

and within the processes themselves for a single-model run. More particularly, 
processes whose network configuration leads to a greater number of rumored 
nodes take longer to complete an iteration. This, in turn, increases the idle time 
of other processes during schedule synchronization as they wait for the slower 
process to complete. We also suspect that variations in network configuration 
are in part responsible for the lack of perfect weak scaling when the process 
count is constant and the number of agents is increased, for example, the 
anomalous spike for 512 processes when running 50 million agents. We hope 
to investigate the effects of network configuration further when expanding the 
rumor model.

Additional future work will investigate scaling beyond 1024 processes. 
Scaling is of course dependent on the trade-off described earlier, especially 
with respect to the cross-process sharing of agents, and thus partly on the 
model. Increasing the number of processes can further increase interprocess 
communication, and the optimum number of agents then changes. Ultimately 
though, given that many models cannot be run at all using current ABMS tools, 

TABLE 5.1  Initialization and Run Times

Process Count Node Count Initialization Time Run Time

128 100,000 1.15 4.05
128 500,000 2.52 10.11
128 1,000,000 3.25 16.73
128 5,000,000 16.15 67.86
128 10,000,000 22.59 120.81
128 50,000,000 79.40 534.08
128 100,000,000 109.08 1024.66
256 100,000 1.70 2.59
256 500,000 2.35 6.48
256 1,000,000 3.46 11.07
256 5,000,000 10.58 39.19
256 10,000,000 30.65 76.68
256 50,000,000 30.57 264.81
256 100,000,000 144.26 558.20
512 100,000 2.75 2.69
512 500,000 3.39 4.59
512 1,000,000 3.46 6.39
512 5,000,000 6.03 20.56
512 10,000,000 11.47 39.13
512 50,000,000 133.02 186.29
512 100,000,000 52.82 283.14
1024 100,000 5.15 1.85
1024 500,000 5.29 3.55
1024 1,000,000 5.70 4.98
1024 5,000,000 7.22 13.00
1024 10,000,000 8.86 22.56
1024 50,000,000 47.20 96.13
1024 100,000,000 135.33 186.36



RefeRenCes    107

the trade-off is not between faster and slower, but rather between running the 
model or not running it all.

5.8  SUMMARY AND FUTURE WORK

This chapter has presented an overview of the Repast HPC project and, more 
particularly, the implementation of the Repast HPC framework. The authors 
hope the framework can help to leverage the increasing computing capability 
made available on high-performance computing platforms by bringing this 
capability to ABMS. Throughout this chapter, we have tried to emphasize that 
our concern is with creating a useful and usable working system. In this, we 
differ from much of the related work in this area. Our experience with the 
implementation of previous Repast systems has taught us about the natural 
fit between agent-based modeling and object-oriented programming, the 
importance of flexible and dynamic scheduling, and, perhaps most importantly, 
that the implementation should be driven by modeling rather than by frame-
work concerns. All these we have tried to carry over into the larger-scale 
distributed context.

In particular, the latter item informs the implementation of the 
RepastProcess, the distributed projections, and the scheduling implementa-
tion. The details of the parallel implementation and MPI are hidden behind a 
simpler API. Where parallel and distributed framework concerns are unavoid-
able, an effort has been made to make these more conceptually accessible by 
framing the documentation and API in terms of the executing process, local 
and nonlocal shared agents. The source code of the example rumor model 
application neatly reflects this. The intention of the model itself is easily dis-
cernable and the parallel or distributed parts of the code are most naturally 
interpreted in terms of executing process, local and nonlocal shared agents. 
Future work will focus on expanding the rumor model, developing additional 
models using the framework, and on improvements to and experiments with 
the framework itself. The intent is to fill existing gaps and to leverage the 
excellent existing work in parallel with discrete-event scheduling to improve 
the scheduling architecture. The simple sample rumor model has illustrated 
the trade-off between agent population size and interprocess communication. 
Future work will attempt to minimize this trade-off, allowing for scaling to a 
larger number of processes with equivalent-sized agent populations.

REFERENCES

R. L. Bagrodia and W. Liao. Parallel simulation of the Sharks World problem. In Proc. 
of the 22nd Winter Simulation Conference, pp. 191–198, 1990.

A. Barabási and R. Albert. Emergence of scaling in random networks. Science, 
286(5439):412–413, 1999.



108    Repast HpC: a platfoRm foR laRge-sCale agent-Based modeling 

D. W. Bauer, C. D. Carothers, and A. Holder. Scalable time warp on Blue Gene super-
computers. In 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and 
Distributed Simulation, pp. 35–44, 2009.

J. Bradshaw. KAoS: An open agent architecture supporting reuse, interoperability, and 
extensibility. In Proc. of the 1996 Knowledge Aquisition Workshop, 1996.

L. Briesemeister, P. Lincoln, and P. Porras. Epidemic profiles and defense of scale-free 
networks. In Proc. of the 2003 ACM Workshop on Rapid Malcode, 1998.

C. D. Carothers, D. W. Bauer, and S. O. Pearce. ROSS: A high-performance low memory, 
modular time warp system. Journal of Parallel and Distributed Computing, 
62(11):1648–1669, 2002.

K. M. Chandy and J. Misra. Distributed simulation: A case-study in design and verifica-
tion of distributed programs. IEEE Transactions on Software Engineering, 
SE(5):440–452, 1979.

K. M. Chandy and J. Misra. Asynchronous distributed simulation via a sequence of 
parallel computations. Communications of the ACM, 24(4):198–205, 1981.

R. M. D’Souza, M. Lysenko, and K. Rahmani. SugarScape on steroids: Simulating over 
a million agents at interactive rates. In Proc. of the Agent 2007 Conference on 
Complex Interaction and Social Emergence, 2007.

S. Deissenberg and H. van der Hoog. EURACE: A massively parallel agent-based 
model of the European economy. Technical report, Universites d’Aix-Marseille, 
2009. halshs.archives-ouvertes.fr/docs/00/33/97/56/PDF/ DT2008-39.pdf.

R. M. Fujimoto. Parallel discrete event simulation. Communications of the ACM, 
33(10):30–53, 1990.

R. M. Fujimoto. Parallel and Distributed Simulation Systems. Piscataway, NJ: Wiley 
Interscience, 2000.

N. Houari and B. H. Far. Building collaborative intelligent agents: Revealing main 
pillars. In Proc. of the Canadian Conference on Electrical and Computer Engineering, 
2005.

T. R. Howe, N. T. Collier, M. J. North, et al. Containing agents: Contexts, projections 
and agents. In Proc. of the Agent 2006 conference on social agents: Results and pros-
pects, 2006.

P. Hudak. Conception, evolution, and application of functional programming languages. 
ACM Computing Surveys, 21(3):359–411, 1989.

D. R. Jefferson. Virtual time. ACM Transactions of Programming Languages and 
Systems, 7(3):404–425, 1985.

D. Jefferson, B. Beckman, F. Wieland, et al. Time warp operating system. ACM SIGOPS 
Operating Systems Review, 21(5):77–93, 1987.

V. Jha and R. Bagrodia. A unified framework for conservative and optimistic distrib-
uted simulation. ACM SIGSIM Simulation Digest, 24(1):12–19, 1994.

H. Karimabadi, J. Driscoll, J. Dave, et al. Parallel discrete event simulation of grid-based 
models: Asynchronous electromagnetic hybrid code. Springer Verlag Lecture Notes 
in Computer Science, 3732:573–582, 2006.

K. Klemm and V. Egužluz. Highly clustered scale free networks. Physical Review E, 
65(036123):1–6, 2002.

M. T. Koehler and B. F. Tivnan. Clustered computing with NetLogo and Repast J: 
Beyond chewing gum and duct tape. In Proc. of the Agent 2005 Conference on 
Generative Social Processes, Models, and Mechanisms, pp. 43–54, 2005.



RefeRenCes    109

Y.-K. Kwok and K.-P. Chow. On load balancing for distributed multiagent computing. 
IEEE Transactions on Parallel and Distributed Systems, 13(8):787–801, 2002.

G. Laycock. The theory and practice of specification based software testing. PhD thesis, 
University of Sheffield, 1993.

M. Lysenko and R. M. D’Souza. A framework for meagascale agent-based model simu-
lations on graphical processing units. Journal of Artificial Societies and Social 
Simulation, 11(4), 2008. Available at http://jasss.soc.surrey.ac.uk/11/4/10.html.

F. Massaioli, F. Castiglione, and M. Bernashci. OpenMP parallelization of agent-based 
models. Parallel Computing, 31(10–12):1066–1081, 2005.

M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionality equdistrib-
uted uniform psuedo-random number generator. ACM Transactions on Modeling 
and Computer Simulation: Special Issue on Uniform Random Number Generation, 
8(1):3–30, 1998.

D. M. Nicol and S. E. Riffe. A “conservative” approach to parallelizing the Sharks World 
simulation. In Proc. of the 22nd Winter Simulation Conference, 1990.

M. J. North and C. M. Macal. Managing Business Complexity: Discovering Strategic 
Solutions with Agent-Based Modeling and Simulation. New York: Oxford University 
Press, 2007.

M. J. North, E. Tatara, N. T. Collier, et al. Visual agent-based model development with 
Repast Simphony. In Proc. of the Agent 2007 Conference on Complex Interaction 
and Social Emergence, 2007.

T. Oguara, D. Chen, G. Theodoropoulos, et al. An adaptive load management mecha-
nism for distribution simulation of multi-agent systems. In Proc. of the 9th IEEE 
Int’l Symposium on Distributed Simulation and Real-Time Applications, 2006.

K. S. Perumulla. μsik—a micro-kernel for parallel/distributed simulation systems. In 
Workshop on Principles of Advanced and Distributed Simulations, 2005.

K. S. Perumulla. Parallel and distributed simulation: Traditional techniques and recent 
advances. In Proc. of the Winter Simulation Conference (WSC), 2006.

K. S. Perumulla. Scaling time warp-based discrete event execution to 104 processors on 
a Blue Gene supercomputer. In Proc. of the 4th Int’l Conference on Computing 
Frontiers, pp. 69–76, 2007.

M. T. Presley, P. L. Reiher, and S. F. Bellenot. A time warp implementation of the Sharks 
World. In Proc. of the 22nd Winter Simulation Conference, pp. 199–203, 1990.

M. Scheutz, P. Schermerhorn, R. Connaughaton, et al. SWAGES: An extendable dis-
tributed experimentation system for large-scale agent-based a life simulations. In 
Proc. of the 10th Int’l Conference on the Simulation and Synthesis of Living Systems, 
2006.

D. Zurell, U. Berger, J. S. Cabral, et al. The virtual ecologist approach: Simulating data 
and observers. Oikos—A Journal of Ecology, 119(4):622–635, 2010.

http://jasss.soc.surrey.ac.uk/11/4/10.html




Chapter 6
Building and Running 

Collaborative Distributed 
Multiscale Applications

Katarzyna Rycerz
AGH University of Science and Technology, Krakow, Poland,  

and ACC Cyfronet AGH, Krakow, Poland

6.1  INTRODUCTION

Multiscale simulations are a dynamically developing area of complex system 
modeling. Examples include blood flow simulations (e.g., in treatment of in-
stent restenosis) as presented by Caiazzo et al. (2009), solid tumor models 
(Hirsch et al., 2009), or stellar system simulations (Portegies Zwart et al., 2008). 
Modern technical solutions provided by computer science offer many useful 
features for such simulations, including support for composability and reuse 
(component approach) as well as resource sharing (grid concept). In this 
chapter, we explain how to efficiently exploit some of them. Providing a dis-
tributed, easy-to-use e-infrastructures that can be collaboratively and trans-
parently shared by multidisciplinary scientists is one of the main aspects of 
large-scale computing. As shown in this chapter, some of these solutions can 
also be successfully applied to the field of multiscale simulations.

111

Marian Bubak
AGH University of Science and Technology, Krakow, Poland,  

and Institute for Informatics, University of Amsterdam, The Netherlands

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski, 
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



112    Building and Running CollaBoRative distRiButed MultisCale appliCations

Grid technologies can be exploited for the development and execution of 
multiscale simulations on various levels. The first approach, based on the 
concept presented by Foster et al. (2001), is to use the grid as a metacomputer 
with access to distributed computing and storage resources. Groen et al. (2010) 
presents a case where a galaxy collision simulation switches at run time 
between heterogeneous resources on two grid sites: a graphical processing unit 
(GPU)-enabled computer (Pharr and Fernando, 2005) in The Netherlands and 
a Gravity Pipe (GRAPE)-enabled machine (Makino et al., 2003) in the United 
States.

The second approach to large-scale distributed computing, based on the 
concept of Web1 and grid services (Foster et al., 2002), allows the user to con-
struct an application from software components (services) installed in the 
e-infrastructure. In this approach, higher-level software services are shared in 
addition to pure computational and storage resources. A good example is the 
GridSpace virtual laboratory presented in Malawski et al. (2010).

The third approach, also connected with the idea of cloud computing 
(Rajkumar and Rajiv, 2010), is to enable the user to dynamically deploy 
software/applications into high-level containers residing on the e-infrastructure. 
One example is the H2O framework (Kurzyniec et al, 2003), where pluglets 
written by a user are deployed into so-called kernels installed on the grid. 
Another system that can be mentioned here is the Highly Available Dynamic 
Deployment Infrastructure for Globus Toolkit (HAND) for dynamic deploy-
ment of grid services (Qi et al., 2007).

In this chapter, we focus on applying the second approach to support mul-
tiscale simulations, that is, allowing the user to build an application from 
software components or services installed in the e-infrastructure. We propose 
a component environment for such simulations that allows multiscale applica-
tion developers to wrap their models as recombinant software components 
and share them using the available e-infrastructure. This would help scientists 
working on multiscale problems to exchange models and connect them in 
various applications.

This chapter is organized as follows. Section 6.2 defines the requirements 
of complex multiscale simulations. Section 6.3 presents some of the available 
grid and component technologies and some related work. Section 6.4 describes 
an environment supporting the high-level architecture (HLA) component 
model. Section 6.5 describes an experiment involving a sample multiscale 
simulation of a dense stellar system. Summary and future work are presented 
in Section 6.6.

6.2  REQUIREMENTS OF MULTISCALE SIMULATIONS

When designing an environment supporting the creation and execution of 
multiscale simulations, one can identify two different types of issues. One 
1 Web services: http://www.w3.org/TR/ws-arch/.

http://www.w3.org/TR/ws-arch/


RequiReMents of MultisCale siMulations    113

group of issues, described in Section 6.2.1, relates to the problem of actually 
connecting two or more simulation modules together. The set of actual require-
ments depends on the type of simulation. In this chapter, we focus on advanced 
time synchronization requirements and describe three different types of time 
interactions between multiscale simulation models. Issues related to compos-
ability and reusability of existing simulation modules are described in Section 
6.2.2, where we also justify the need for wrapping simulation models into 
recombinant software components that can later be selected and assembled 
in various combinations.

6.2.1  Interactions between Single-Scale Models

Interactions between single-scale modules require adherence to conservation 
laws, support for joining modules with different internal time management, 
efficient data exchange between pairs of modules with different scales, and so 
on. The set of actual requirements depends on the type of simulation: Not 
every set of models requires advanced time management, so the simulation 
developer needs to make an optimal choice between functionality and simplic-
ity of the environment. For example, the Multiscale Multiphysics Scientific 
Environment (MUSE) (Portegies Zwart et al., 2008) requires advanced time 
synchronization between modules, whereas the simulation model of in-stent 
restenosis (Caiazzo et al., 2009), applying asynchronous unidirectional pipes 
blocking on the receiver site, remains sufficient for communication.

In our work, we focus on models that require advanced synchronization 
support. Temporal interactions occurring between multiscale components 
were analyzed in our previous study (Rycerz et al., 2008c); they will also be 
briefly described in the following three subsections. We can distinguish sce-
narios where modules are running concurrently and exchanging time-stamped 
data using (1) a conservative approach, (2) an optimistic approach, and (3) 
situations where one module triggers another and waits for its data.

Our analysis bases on modules derived from MUSE, which is a sequential 
simulation environment designed for dense stellar systems. However, the types 
of supported interactions are generic and can apply to other module connec-
tions that require advanced time management facilities.

6.2.1.1  Concurrent  Execution:  Conservative  Approach  One of the 
most common types of interactions between simulation models occurs when 
one simulation regulates the timing of another simulation, as shown in Figure 
6.1 The conservative constrained simulation can move forward as far as it is 
allowed by the regulating simulation. In Figure 6.1, the constrained simulation 
is not allowed to go beyond time t = t1 until it is certain that it will not receive 
any messages with time stamp t = t1 (i.e., until the regulating simulation does 
not move forward).

This type of interaction is useful when data sent by the regulating simula-
tion affect the entire constrained simulation and any rollback would be too 



114    Building and Running CollaBoRative distRiButed MultisCale appliCations

costly. In multiscale simulations, this approach can be applied when a mac-
roscale model produces some useful data for a mesoscale model. It enables 
the macroscale model simulation to move forward as far as needed and to 
control the mesoscale model simulation. As the mesoscale model moves 
forward slower (in terms of simulation time units), controlling it via the mac-
roscale model should be acceptable.

6.2.1.2  Concurrent Execution: Optimistic Approach  When a conserva-
tive approach is significant for simulation execution, one may apply optimistic 
model interaction. In this case, both simulations can advance in time as far as 
possible, but once one of them receives a message with a time stamp lower 
then its execution time, it needs to roll back its state to match this execution 
time. This is shown in Figure 6.2, where the optimistic simulation has to roll 
back from t = t2 to t = t1 because the regulating simulation has just sent a 
message with time stamp t = t1.

This type of interaction is useful for models where rollback is relatively 
inexpensive—for example, an outdated message only affects some of the 

Figure 6.2  Concurrent execution—optimistic approach. Both simulations can advance in time 
as far as needed, but a rollback becomes necessary if an outdated message is received.

Optimistic

Regulating

Message

Rollback

Timet = t1 t = t2

Figure  6.1  Concurrent execution—conservative approach. the conservative constrained 
simulation can move forward as far as it is allowed by the regulating simulation.

(conservative)

Regulating

Message

t = t0 t = t1 Time

Constrained



RequiReMents of MultisCale siMulations    115

Figure 6.3  execution triggered by another simulation. one simulation launches the execution 
of another and waits for its results.

triggered

long-term

trigger

timet = t1

results already produced. In multiscale simulations, this situation occurs, for 
instance, when the microscale model produces data useful for the macroscale 
model in an asynchronous way and such data only affect some part of the 
macroscale model.

6.2.1.3  Execution Triggered by Another Execution  Sometimes, it is not 
necessary to run two simulation models concurrently, either in an optimistic 
or conservative way. Consequently, a much simpler solution can be applied. 
This happens when model A “knows” when to launch the execution of model 
B (usually with a relatively short execution time) and waits for its results, as 
presented in Figure 6.3, where the long-term simulation triggers a short model 
execution.

In multiscale simulations, this situation occurs, for example, when a meso-
scale model needs to launch a microscale simulation to obtain data that will 
have a significant effect on the whole mesoscale simulation.

6.2.2  Interoperability, Composability, and Reuse of  
Simulation Models

Another important set of requirements involves the reuse of existing models 
and their composability. Specifically, it might prove useful to find existing 
models and to link them together. Therefore, there is a need for wrapping 
simulations into recombinant components that can be selected and assembled 
in various ways to satisfy specific requirements. The modeling and simulation 
community has a need for simulation interoperability and composability.2

Ongoing efforts in this research area have resulted in the Base Object 
Model (BOM)3 standard for semantic description of simulation components 
and their relationships. However, none of the present solutions is widely 
applied by simulation developers, and they generally do not address issues 
specific to multiscale simulations. This is due to the fact that composability and 

3 BOM standards home page: http://www.boms.info/standards.htm.

2 The Simulation Interoperability Standards Organization (SISO) home page: http://www.
sisostds.org/.

http://www.boms.info/standards.htm
http://www.sisostds.org/
http://www.sisostds.org/


116    Building and Running CollaBoRative distRiButed MultisCale appliCations

reuse requirements imply simplicity and ease of use, which, in turn, has  
to be provided along with advanced functionality, specific to multiscale 
simulations.

The above-mentioned requirements can be fulfilled by applying new tech-
nological solutions, assisting multiscale simulation researchers in collabora-
tion, exchange of simulation models, and sharing know-how ideas for the 
effective operation of such complex simulations. The next section provides an 
overview of new technological solutions.

6.3  AVAILABLE TECHNOLOGIES

6.3.1  Tools for Multiscale Simulation Development

6.3.1.1  Model Coupling Toolkit (MCT)  MCT (Larson et al., 2005) is a tool 
capable of simplifying the construction of parallel coupled models. It was suc-
cessfully exploited in a parallel climate model. MCT applies the Message 
Passing Interface (MPI) style of communication between simulation modules. 
It is designed for the domain data decomposition of a simulated problem and 
provides support for advanced data transformations between different 
modules. Data are exchanged between modules with a defined coupling 
frequency.

6.3.1.2  HLA  HLA4 is a standard for large-scale distributed interactive 
simulations. HLA offers the ability to plug and unplug modules containing 
various simulation models, with different internal types of time management, 
to/from a complex simulation system. The elements of the simulation system 
are connected together in a tuple space, used for subscribing to and publishing 
time-stamped events and data objects.

6.3.1.3  MUSE  MUSE (Portegies Zwart et al., 2008) is a software environ-
ment for astrophysical applications in which different simulation models of 
star systems are incorporated into a single framework. The scripting approach 
(Python) is used to couple software modules containing models. Currently, the 
set of available models includes stellar evolution, hydrodynamics, stellar 
dynamics, and radiative transfer domains. Python scripts are used to execute 
modules in an appropriate order. Execution is sequential; that is, in a single 
time loop, the module containing model A is executed followed by the module 
with model B. Finally, the data are updated in both modules.

6.3.1.4  The Multiscale Coupling Library and Environment  (MUSCLE) 
MUSCLE (Hegewald et al., 2008) provides a software framework for building 
simulations according to the complex automata theory (Hoekstra et al., 2007). 

4 High Level Architecture specification—IEEE 1516.



availaBle teChnologies    117

It has been applied to the simulation of coronary artery in-stent restenosis 
(Caiazzo et al., 2009), but it is designed for complex automata in general. The 
framework introduces the concept of kernels, which communicate by unidi-
rectional pipelines dedicated to passing specific types of data from/to a kernel. 
Communication is asynchronous and blocks only on the receiver side.

Table 6.1 depicts data comparing the environments mentioned earlier. The 
data show that the functionality of the environments is complementary and 
that the user choice depends on the concrete simulation requirements. MCT 
is appropriate for parallel simulations with domain decomposition, while HLA 
is suitable for joining simulation with different time management polices, but 
is also quite complicated and involves a steep learning curve. MUSE is rela-
tively easy to use, but it is designed mainly for astrophysical simulations. 
MUSCLE was designed for cellular automata problems and can be used for 
simulations that require simple asynchronous communication.

In our work, we have decided to apply HLA due to its advanced support 
for distributed simulations, especially its time management facilities, which 
cover all three types of time interactions mentioned in Section 6.2.1), and it 
also allows us to join different types of time interactions in one simulation 
system.

6.3.2  Support for Composability

Composition approaches vary with regard to their degree of coupling. The 
most loosely coupled approach includes workflow models, such as Business 

TABLE 6.1  Comparison of Environments Supporting Multiscale Model Coupling

Type of Execution Time Management Data Distribution
Data Converters 
between Modules

MCT Parallel Data exchanged 
with defined 
frequency

Domain 
decomposition, 
message 
passing (MPI)

Support for data 
conversion 
between 
processes

HLA Concurrent 
execution in 
distributed 
environment

Advanced time 
management 
(conservative/
optimistic)

Publish/subscribe 
in tuple space

No explicit 
support for 
data 
conversion

MUSE Sequential, code 
coupled by 
Python

Sequential 
execution of 
model parts in a 
time loop

Explicit function 
calls that 
transform data 
from one model 
to another in 
the time loop

Data conversions 
can be 
programmed in 
functions

MUSCLE Concurrent 
execution in 
distributed 
environment

Asynchronous 
(nonblocking 
send-blocking 
receive)

Unidirectional 
pipes (conduits) 
between 
models

Data converters 
can be applied 
to conduits



118    Building and Running CollaBoRative distRiButed MultisCale appliCations

Process Execution Language (BPEL),5 ASKALON (Fahringer et al., 2005), or 
Kepler (Altintas et al., 2004). They focus mainly on loosely coupled services 
without support for direct links. Script-based solutions for loosely coupled 
compositions include Geodise (Pound et al., 2003) and GridSpace virtual 
laboratory.6

In a tightly coupled approach to composition, the application is presented 
as a graph of connected components. The graph defines the workflow of the 
application, showing how components directly call each other. There are also 
sample architectures, for example, the Service Component Architecture 
(SCA),7 where business functionality is provided as a series of services, which 
are assembled together to create solutions that serve a particular business 
need. Another example is the Common Component Architecture (CCA) 
described by Armstrong et al. (2006) (with implementations such as MOCCA, 
described by Malawski et al., 2006), used in high-performance computing, 
where scientific components are directly connected by their Uses and Provides 
ports. The Provides port is a set of public interfaces that the component imple-
ments and that can be referenced and “used” by other components. The Uses 
port can be viewed as a connection point on the surface of the component 
where the framework can attach (connect) references to Provides ports imple-
mented by other components of the framework.

In addition, there are also high-level composition models based on a skel-
eton concept, such as those recently developed for grid computing (e.g., grid 
component model [GCM]), presented by Françoise et al., 2009). To the best 
of our knowledge, none of the existing component approaches provides 
advanced features for distributed multiscale simulations (in particular, they do 
not explicitly support connections of modules with different time management 
mechanisms); thus, there is a need for a component model that supports such 
advanced, simulation-specific types of connections.

6.3.3  Support for Simulation Sharing

The grid concept (Foster et al., 2002) is oriented toward joining geographically 
distributed communities of scientists working on shared problems. This feature 
also enables users of distributed simulations to more easily exchange software 
components containing their models. The grid aims at facilitating access to 
distributed resources across administrative domains. For example, the concept 
of a virtual organization (VO) introduced by Foster et al. (2001) allows a set 
of individuals and/or interrelated institutions to share resources, services, and 
applications regardless of their administrative domains and geographic 
locations.

7 G. Barber. Service Component Architecture Home, 2007. http://osoa.org/display/Main/Service+
Component+Architecture+Home.

6 Virolab home page: http://virolab.cyfronet.pl.

5 OASIS WSBPEL Technical Committee. Web Services Business Process Execution Language 
Version 2.0, April 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

http://osoa.org/display/Main/Service+Component+Architecture+Home
http://osoa.org/display/Main/Service+Component+Architecture+Home
http://virolab.cyfronet.pl
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html


an enviRonMent suppoRting the hla CoMponent Model     119

One of the most important implementations of the grid concept is the 
Globus Toolkit.8 To achieve interoperability between distributed systems, the 
Globus community has come up with the idea of extending the Web services 
standard9 with state and dynamic creation facilities, which resulted in the Web 
Services Resource Framework (WSRF) standard. WSRF uses a classical Web 
service as an interface to a stateful WS-Resource.10 Apart from the work of 
the Globus community, there are also other approaches to grid computing. 
Grids can be built on top of the H2O resource sharing platform (Kurzyniec 
et al., 2003), which introduces the concept of kernels, that is, containers for 
user-provided software modules. Usually, kernels should be installed on an 
e-infrastructure, while the modules (called pluglets) can be dynamically 
deployed by authorized third parties (not necessarily kernel owners). The 
framework is portable (Java based), secure, scalable, and lightweight. Finally, 
grid architectures can be constructed from pure Web services or component 
technologies described in the previous sections.

Examples of working grids include European e-infrastructures such as 
Enabling Grids for E-sciencE (EGEE) or Distributed European Infrastructure 
for Supercomputing Applications (DEISA).

As our goal is to support component exchange between scientists working 
in the field of multiscale simulations regardless of their actual geographic  
location, we have decided to use grid solutions and have chosen the H2O 
framework as a lightweight platform designed to support composition 
frameworks.

6.4  AN ENVIRONMENT SUPPORTING THE HLA  
COMPONENT MODEL

6.4.1  Architecture of the CompoHLA Environment

The architecture of the CompoHLA environment is shown in Figure 6.4. A 
Client CompoHLA Manager provides a user API accessible via a scripting 
language to call other modules of the framework. The Remote CompoHLA 
Manager manages simulation configuration files—currently, an HLA federa-
tion object model (FOM) that describes events and objects exchanged between 
simulation modules. It also starts and stops a legacy run-time infrastructure 
(RTI) control process necessary to run an HLA application.

HLA components contain actual simulation models wrapped as software 
modules, plugged into the HLA RTI by join/resign mechanisms, which they 
use to communicate. In comparison, the CCA model introduces direct connec-
tions between components by joining Provides and Uses ports, as described 
in Section 6.3.2. The components can use all available mechanisms provided 

10 WSRF home page: http://www.globus.org/wsrf/.

9 Web services: http://www.w3.org/TR/ws-arch/.

8 http://www.globus.org.

http://www.globus.org/wsrf/
http://www.w3.org/TR/ws-arch/
http://www.globus.org


120    Building and Running CollaBoRative distRiButed MultisCale appliCations

by HLA (time and data management), especially when building multiscale 
simulations with different timescales. Thanks to HLA features it is possible to 
aggregate models with different internal timescales into one coherent simula-
tion system. Different types of time management (event driven vs. time driven 
and conservative vs. optimistic) can be integrated so that all time interactions 
described in Section 6.2.1 are supported. Simulation modules can exchange 
events and data objects using publish/subscribe mechanisms. For advanced 
synchronization, they can use time-stamped messages (transitory events and 
persistent objects).

The difference between this approach and the original HLA is that the 
behavior of components and their interactions is defined and set by an external 
module upon user request. The proposed approach separates component 
developers from users who wish to construct a particular distributed simula-
tion system from existing components. Preliminary component design and 
implementation are described in our previous work (Rycerz et al., 2008a, 
2008b).

6.4.2  Interactions within the CompoHLA Environment

A generic time sequence diagram showing an interaction scenario between 
components in the CompoHLA environment during the setup process is pre-

Figure 6.4  architecture of the Compohla environment. the user interacts with hla compo-
nents and the Rti control process via the Client Compohla Manager api accessible via a 
scripting language.

HLA Component HLA Component

Component
Stearing 

Script

Description
of HLA 
Data Object/Events
Exchanged (FOM)

RTI Control
Process

Remote
CompoHLA
Manager

FOM File
Repository

...

Client CompoHLA
Manager

Site B Site C Site Z 

USER
Site A 

HLA RTI 





122    Building and Running CollaBoRative distRiButed MultisCale appliCations

6.4.3  HLA Components

The detailed architecture of an HLA component is shown in Figure 6.6. The 
simulation code (custom for each component and provided by the component 
developer) interfaces other elements of the component by means of the 
CompoHLA library.

Components are plugged into the HLA RTI to communicate with each 
other by means of HLA mechanisms. They need to process internal requests 
coming from the simulation code layer and the HLA RTI layer (from other 
components). Moreover, they expose interfaces for external state change 
requests in the HLA RTI layer generated from the client while the actual 
simulation is already running.

To efficiently handle concurrent processing of internal and external requests, 
we have applied ideas from the active object pattern presented by Lavender 
and Schmidt (1995), which separates invocation from execution. We have 
introduced a scheduler processing external requests, called from the simula-
tion by a single routine (Pycerz and Bubak, in print). External requests are 
processed asynchronously—the scheduler places them in a queue, where they 
can later be retrieved and actually executed (when called from the simulation 
code).

The scenario of interaction between HLA component modules is shown in 
Figure 6.7 in the form of a time sequence diagram.

First, the client invokes a request on the HLA component that is processed 
by the ComponentHLA class. The ComponentHLA class invokes the enqueue 

Figure 6.6  architecture of the hla component plugged into the hla Rti communication bus. 
the component exposes an interface for external requests. thus, it is possible to change the 
state of the simulation in the hla Rti layer by using an independent client.

HLA RTI

Component HLA

Client

RTI Lib

CompoHLA Lib

Component HLA

Queue

Simulation
Code

Scheduler





124    Building and Running CollaBoRative distRiButed MultisCale appliCations

method of CompoHLAScheduler, which places the appropriate type of 
request (MethodRequest) in the queue. The handle of this request is returned 
to the client. If the client invokes the start method on the HLA component, 
it causes ComponentHLA to start a new thread, ComponentThread, which 
runs the actual simulation (using the CompoHLA library API). During the 
execution of the simulation, the user code (via CompoHLA library API) peri-
odically calls the dispatch() method of the CompoHLAScheduler. The 
scheduler withdraws MethodRequests from the queue and executes their 
call method, which then executes appropriate request methods of 
CompoHLAServant (according to the actual type of MethodRequest). The 
server calls the CompoHLA library, which actually executes the request. 
Results are stored in ComponentHLA by calling its setResultValue 
method, which enables them to be retrieved by the client.

6.4.4  CompoHLA Component Users

There are two different group of users of the CompoHLA system: developers who 
create components and scientists who actually use them (component users).

The component developer can wrap a custom legacy simulation module 
using the CompoHLA library as described by Rycerz et al. (2008a, 2008b) so 
that it can be easily plugged into the distributed multiscale simulation. The use 
of the compoHLA library does not free the developer from understanding 
HLA time management and data exchange mechanisms; however, it consider-
ably simplifies their use and enables the HLA component to be steered from 
the user code.

The component user can use a scripting language to dynamically set up a 
distributed multiscale simulation comprising selected HLA components. He 
can also decide which components will participate in simulation and can 
dynamically plug and unplug them to/from running simulations. Additionally, 
the user can decide how components will interact with one another (e.g., by 
setting up appropriate HLA subscription/publication and time management 
mechanisms) and can change the nature of their interactions during run time.

6.5  CASE STUDY WITH THE MUSE APPLICATION

 The implementation of the CompoHLA environment is based on the H2O 
technology. The functionality of the CompoHLA system is presented here on 
the example of a multiscale dense stellar system simulation. We have used 
simulation modules with different timescales taken from MUSE, as described 
in Section 6.3.1. Our experiment compares the execution of legacy sequential 
MUSE with its distributed version using HLA components on the grid. We 
make use of the Dutch Grid DAS311 infrastructure. Components are built from 

11 The Distributed ASCI Supercomputer 3 Web site: http://www.cs.vu.nl/das3.

http://www.cs.vu.nl/das3


Case study with the Muse appliCation    125

two MUSE modules: star evolution simulation (macroscale) and star dynamics 
simulation (mesoscale), which run concurrently to show the second type of 
time interaction described in Section 6.2.1.1, namely, concurrent execution—
conservative approach. This experiment is a good example of using the HLA 
time management features when one simulation controls the timing of another. 
The dynamics module should obtain updates from the evolution module 
before it actually passes the appropriate point in time. The HLA time manage-
ment mechanism (High Level Architecture specification—IEEE 1516) of the 
regulating federate (evolution), which controls the time flow in the constrained 
federate (dynamics), is therefore very useful. We have created a sample simu-
lation consisting of a hundred stars. Data representing mass, radius, 3-D posi-
tion, and velocity of stars were exchanged between the evolution and dynamics 
modules. The HLA components were asked to join the simulation (both), set 
the time-regulating policy, and publish data (evolution component) or sub-
scribe to data (dynamics component). Subsequently, the components were 
asked to unset their time policy, resign the simulation, and stop. Figure 6.8 
shows a sample user script (JRuby file) that performs these steps.

In our implementation, we have used H2O v2.1 and HLA CERTI imple-
mentation v3.3.2. The client script was written in JRuby 1.5.0.RC3 (Ruby 
1.8.7). Experiments were performed using DAS3. MUSE sequential execution 
was run on a grid node in Delft. The actual setup of the HLA component 
experiment is shown in Figure 6.9.

The component client was run on a grid node in Leiden; the dynamics 
component was run on a grid node in Delft; the evolution component was run 
at UvA, Amsterdam, while the HLA control process was run at Vrije University, 
Amsterdam. All grid notes shared a similar architecture (dual AMD Opteron 
compute nodes, 2.4 GHz, 4-GB RAM). DAS3 employs a novel internal wide-
area interconnect based on light paths between its grid sites.12 A comparison 
between the distributed version using HLA components and the sequential 

Figure  6.8  a fragment of a sample user JRuby script. the script show the setting up and 
steering of a multiscale simulation consisting of two hla components that contain dynamics 
(mesoscale) and evolution (macroscale) models.

Dynamics
Component

at Delft

Evolution
Component

at Amsterdam

Set Regulation Policy
Start/Stop

HLA RTI

Client
at Leiden Set Constrained Policy

Start/Stop

Join/Resign
Subscribe

Join/Resign
Publish

12 StarPlane home page http://www.starplane.org/.

http://www.starplane.org/


126    Building and Running CollaBoRative distRiButed MultisCale appliCations

TABLE 6.2  Stellar Dynamics and Evolution: Multiscale 
Simulation Time Using Original MUSE Sequential Execution 
Steered by Python Scheduler

Sequential MUSE

Time (second) σ

Dynamics calculation 18.1 0.6
Evolution calculation 0.004 0.0001
Data update evolution–dynamics 0.01 0.001
Total simulation time 18.1 0.6

TABLE 6.3  Stellar Dynamics and Evolution: Multiscale Simulation Time Using 
Distributed HLA Components

Dynamics Component Evolution Component

Time (second) σ Time (second) σ

Dynamics 
calculation

17.6 0.08 Evolution calculation 0.004 0.0001

Synchronization 
with evolution

0.007 0.0001 Synchronization with 
dynamics

0.04 0.001

Scheduler 0.6 0.05 Scheduler 0.6 0.05
Total simulation 

time
18.3 0.08 Total simulation time 1.1 0.05

Figure 6.9  setup of the hla component experiment. elements of the Compohla environment 
are installed on different sites on the das3 e-infrastructure and are called by the client script.

Remote
CompoHLA

Manager

at VU.Amsterdam

Client
at Leiden

Dynamics
Component

at Delft

Evolution
Component

at UvA.Amsterdam

HLA RTI

Create
Join/Resign

Publish
Set Regulation Policy

Start/Stop

Create
Join/Resign
Subscribe

Set Constrained Policy
Start/Stop

Create
Add Config

MUSE Python scheduler is shown in Tables 6.2 and 6.3. The overhead of using 
the scheduler and HLA communication mechanisms (time management and 
data transfer) was very low in comparison to actual calculations. Note that the 
computation time for the dynamics component was far more significant than 
evolution time; therefore, the dynamics were the dominant factor of the total 
simulation time in both cases (concurrent and sequential execution). The per-



suMMaRy and futuRe woRk    127

formance results prove that the overhead of the HLA-based distribution 
(especially its repeating part involving synchronization between multiscale 
elements) was low and that HLA can be beneficial for multiscale simulations. 
Moreover, the scheduler-based deign, which manages external requests, did 
not produce much overhead.

Table 6.4 shows the execution time for requests issued to the HLA compo-
nent from the client perspective, measured in a JRuby script from Figure 6.8 
(in miliseconds). The most time-consuming part was the creation of a remote 
manager and components as it required a loading code. Adding a config file 
to the manager and preparing join requests was also time-consuming as these 
operations required transferring config files.

Other requests to the components were on the order of several millisec-
onds. The requests were called in an asynchronous fashion so that during the 
call, they were only scheduled in the queue. Actual work was performed by 
the scheduler, with timing presented in Table 6.3. The results of the experiment 
showed that the execution time of requests was relatively low and that the 
component layer did not introduce significant overhead.

6.6  SUMMARY AND FUTURE WORK

In this chapter, we presented an environment supporting the HLA component 
model that enables the user to dynamically compose/decompose distributed 
simulations from multiscale elements residing on e-infrastructures. The  

TABLE 6.4  Timing of Requests to the Modules of the 
CompoHLA Environment Issued from the JRuby Script

Request Time (millisecond) σ

Create remote manager 2020 36
Create dynamics component 2120 23
Create evolution component 2150 27
Add config to the manager 150 39
Join evolution 140 9
Join dynamics 171 3
Publish evolution 4 0.1
Subscribe dynamics 5 0.4
Set time policy evolution 4 0.1
Set time policy dynamics 5 0.4
Start evolution 4 0.4
Start dynamics 7 0.6
Unset time policy evolution 5 0.4
Unset time policy dynamics 9 0.4
Resign evolution 5 0.2
Resign dynamics 8 0.9
Stop evolution 3 0.4
Stop dynamics 8 0.4



128    Building and Running CollaBoRative distRiButed MultisCale appliCations

simulation models, encapsulated in software components, can make use of 
advanced HLA mechanisms such as time and data management, which is 
especially helpful when joining different timescales. The elements of the envi-
ronment are programmatically accessible via scripting interfaces. Prototype 
functionality was described on the basis of a sample multiscale simulation of 
a dense stellar system in the MUSE environment. The results of the experi-
ment show that that the component layer does not introduce much 
overhead.

The HLA components described in this chapter are designed to facilitate 
the composability of simulation models by means of HLA mechanisms, acces-
sible and steerable from the user layer. However, in order to fully exploit their 
composability, we are currently in the process of integration with the GridSpace 
Virtual Laboratory.13 GridSpace provides an experiment workbench for con-
structing experiment plans from code snippets. It supports multiple interpret-
ers and enables access to computing infrastructures. The basic integration step 
is straightforward—the client script setting up HLA components (shown in 
Fig. 6.8) can be directly run as a GridSpace experiment and connects to the 
H2O component containers installed on the e-infrastructure. Integration with 
GridSpace yields the ability to interpret commands issued to HLA compo-
nents in an interactive mode as it supports step-by-step programming where 
steps are not known in advance but are based on previous results. This feature 
is especially useful for long-running simulation models producing partial 
output.

We plan to use GridSpace to access other European e-infrastructures (e.g., 
EGEE) apart from using DAS2 and also to use the common GridSpace ser-
vices (gems) for component sharing and future reuse. In the future, partial 
results of long-running components will be accessible directly from the 
GridSpace workbench using its interface to a Web application displaying 
output and error streams from components.

Future work will also involve a description language for connecting HLA 
components. Currently in our work, we use the HLA FOM definition of struc-
tures of data objects and events that need to be passed between HLA com-
ponents. This approach should be further extended to provide more information 
related to the scale of modules. Moreover, module descriptions should be flex-
ible enough to support simpler types of data (e.g., arrays) frequently used in 
legacy implementations of simulation models.

ACKNOWLEDGMENTS

The authors wish to thank Alfons Hoekstra and Jan Hegewald for discussions 
on MUSCLE, Simon Portegies Zwart for valuable discussions on MUSE and 
our colleagues for input concerning GridSpace. The authors are also very 
grateful to Piotr Nowakowski for his suggestions. The research presented  



RefeRenCes    129

in this chapter was partially supported by the European Union in the  
EFS PO KL Pr. IV Activity 4.1 Subactivity 4.1.1 project UDA-
POKL.04.01.01-00-367/08-00 “Improvement of the Didactic Potential of the 
AGH University of Science and Technology—Human Assets” and also by the 
MAPPER project—grant agreement no. 261507, 7FP UE.

REFERENCES

I. Altintas, E. Jaeger, K. Lin, et al. A Web service composition and deployment frame-
work for scientific workflows. In ICWS’04: Proc. of the IEEE Int’l Conference on 
Web Services, p. 814, Washington, DC: IEEE Computer Society, 2004.

R. Armstrong, G. Kumfert, L. Curfman McInnes, et al. The CCA component model for 
high-performance scientific computing. Concurrency and Computation-Practice & 
Experience, 180(2):215–229, 2006.

A. Caiazzo, D. Evans, J.-L. Falcone, et al. Towards a complex automata multiscale  
model of in-stent restenosis. In G. Allen et al., editors, ICCS’09: Proc. of the 9th 
Int’l Conference on Computational Science, pp. 705–714, Berlin: Springer-Verlag, 
2009.

T. Fahringer, A. Jugravu, S. Pllana, et al. ASKALON: A tool set for cluster and grid 
computing: Research articles. Concurrency and Computation-Practice & Experience, 
17(2–4):143–169, 2005.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable 
virtual organizations. International Journal of High Performance Computing 
Applications, 15(3):200–222, 2001.

I. Foster, C. Kesselman, J. M. Nick, et al. The physiology of the grid: An Open Grid 
Services Architecture for distributed systems integration. In Open Grid Service 
Infrastructure WG, Global Grid Forum, June 2002.

B. Françoise, C. Denis, D. Cédric, et al. GCM: A grid extension to fractal for autonomous 
distributed components. Annales des Télécommunications, 64(1–2):5–24, 2009.

D. Groen, S. Harfst, and S. Portegies Zwart. The living application: A self-organizing 
system for complex grid tasks. International Journal of High Performance Computing 
Applications, 24(2):185–193, 2010.

J. Hegewald, M. Krafczyk, J. Tölke, et al. An agent-based coupling platform for complex 
automata. In M. Bubak et al., editors, ICCS’08: Proc. of the 8th Int’l Conference on 
Computational Science, Part II, pp. 227–233, Berlin: Springer-Verlag, 2008.

S. Hirsch, D. Szczerba, B. Lloyd, et al. A mechano-chemical model of a solid tumor for 
therapy outcome predictions. In G. Allen et al., editors, ICCS’09: Proc. of the 9th Int’l 
Conference on Computational Science, pp. 715–724, Berlin: Springer-Verlag, 2009.

A. G. Hoekstra, E. Lorenz, J.-L. Falcone, et al. Toward a complex automata formalism 
for multi-scale modeling. International Journal for Multiscale Computational 
Engineering, 5(6):491–502, 2007.

D. Kurzyniec et al. Towards self-organizing distributed computing frameworks: The 
H2O approach. Parallel Processing Letters, 13(2):273–290, 2003.



130    Building and Running CollaBoRative distRiButed MultisCale appliCations

J. Larson, R. Jacob, and E. Ong. The Model Coupling Toolkit: A new Fortran90 toolkit 
for building multiphysics parallel coupled models. International Journal of High 
Performance Computing Applications, 19(3):277–292, 2005.

G. Lavender and D. C. Schmidt. Active object: An object behavioral pattern for concur-
rent programming. In Proc. Pattern Languages of Programs, 1995.

J. Makino, E. Kokubo, and T. Fukushige. Performance evaluation and tuning of GRAPE-
6—towards 40 “real” Tflops. In SC’03: Proc. of the 2003 ACM/IEEE Conference on 
Supercomputing, p. 2, Washington, DC: IEEE Computer Society, 2003.

M. Malawski, T. Bartyński, and M. Bubak. Invocation of operations from script-based 
grid applications. Future Generation Computer Systems, 26(1):138–146, 2010.

M. Malawski, M. Bubak, M. Placek, et al. Experiments with distributed component 
computing across grid boundaries. In Proc. of the HPC-GECO/CompFrame 
Workshop in Conjunction with HPDC 2006, Paris, France, 2006.

M. Pharr and R. Fernando. GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation (GPU Gems). Boston: 
Addison-Wesley Professional, 2005.

S. Portegies Zwart, S. Mcmillan, B. Ó. Nualláin, et al. A multiphysics and multiscale 
software environment for modeling astrophysical systems. In M. Bubak et al., 
editors, ICCS’08: Proc. of the 8th Int’l Conference on Computational Science, Part 
II, pp. 207–216, Berlin: Springer-Verlag, 2008.

G. E. Pound, M. H. Eres, J. L. Wason, et al. A grid-enabled problem solving environment 
(PSE) for design optimisation within Matlab. In IPDPS’03: Proc. of the 17th Int’l 
Symposium on Parallel and Distributed Processing, p. 50.1, Washington, DC: IEEE 
Computer Society, 2003.

L. Qi, H. Jin, I. Foster, et al. HAND: Highly Available Dynamic Deployment 
Infrastructure For Globus Toolkit 4. In P. D’Ambra and M. R. Guarracino, editors, 
PDP’07: Proc. of the 15th Euromicro Int’l Conference on Parallel, Distributed and 
Network-Based Processing, pp. 155–162, Washington, DC: IEEE Computer Society, 
2007.

B. Rajkumar and R. Rajiv. Special section: Federated resource management in grid and 
cloud computing systems. Future Generation Computer Systems, 26:1189–1191, 2010.

K. Rycerz, M. Bubak, and P. M. Sloot. HLA component-based environment for distrib-
uted multiscale simulations. In T Priol and M Vanneschi, editors, From Grids to 
Service and Pervasive Computing, pp. 229–239, Berlin: Springer-Verlag, 2008a.

K. Rycerz, M. Bubak, and P. M. Sloot. Dynamic interactions in HLA component model 
for multiscale simulations. In M. Bubak et al., editors, ICCS’08: Proc. of the 8th Int’l 
Conference on Computational Science, Part II, pp. 217–226, Berlin: Springer-Verlag, 
2008b.

K. Rycerz, M. Bubak, and P. M. A. Sloot. Using HLA and grid for distributed multiscale 
simulations. In R. Wyrzykowski et al., editors, PPAM’07: Proc. of the 7th Int’l 
Conference on Parallel Processing and Applied Mathematics, pp. 780–787, Berlin: 
Springer-Verlag, 2008c.



Chapter 7
Large-Scale Data-

Intensive Computing
Mark Parsons

EPCC, The University of Edinburgh, Edinburgh, United Kingdom

7.1  DIGITAL DATA: CHALLENGE AND OPPORTUNITY

7.1.1  The Challenge

When historians come to write the history of the early part of the 21st century, 
they will almost certainly describe this period as one of the enormous trans-
formations in the way human beings interact with each other and the world 
around them and how they store the information arising from those 
interactions.

The scientific community has managed large digital data sets, in particular 
in the particle physics and astronomy domains, for more than 30 years. Once 
the preserve of the scientific domain, over the past two decades, we have wit-
nessed the steady digitization of information throughout our daily lives. From 
digital photography to bar coding in shops to our electronic tax return to 
mobile phones, we are surrounded by data derived from digital devices. This 
revolution has happened surprisingly quickly and is almost certainly still in its 
infancy. Today, we are generating more stored data in each year than in all of 
the preceding years combined. We are already struggling to deal with this data 
deluge and, as data volumes continue to double, this problem can only get 
more challenging. The challenges we face include

131

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski, 
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



132    Large-ScaLe Data-IntenSIve computIng

• managing the increasing volume and complexity of primary data and the 
increasing rate of data derived from that primary data,

• coping with the rapid growth in users of that data who want to make use 
of it in their professional and private lives, and

• balancing the pressures to accommodate new requirements within exist-
ing computational infrastructures to protect existing investments.

In order to meet these challenges, a new domain of large-scale data-intensive 
computing is emerging where distributed data and computing resources are 
harnessed to allow users to manage, process, and explore individual data sets 
and, where appropriate, join them with other data sets to answer previously 
unanswerable questions.

7.1.2  The Opportunity

The massive proliferation of digital data provides mankind with previously 
unimaginable opportunities to understand the world around us. Those who are 
prepared to move adroitly in this fast-changing field will reap the greatest 
rewards. The key to succeeding is the acceptance that we are reaching a tipping 
point with regard to digital data.

Until now, for most people, the way we deal with all of the new data in our 
day-to-day lives both at work and at home has been to self-manage much of 
it. We all spend many hours archiving e-mails and photographs and moving 
our scientific or business data around to where we need it. As this task has 
grown, it has become clear to many people that self-management is no longer 
tenable and new tools are needed to help. However, many of these tools do 
not exist or are in their infancy.

There are enormous opportunities to develop new methodologies for man-
aging and using digital data to answer a myriad of questions. These opportuni-
ties will be enabled partly through computational technologies but also through 
a revision of how we think about ownership, provenance, and use of data: who 
owns it, who created it, who can use it, and what it can be used for.

The area of data-intensive computing is a very large one, and in the remain-
der of this chapter, it is only possible to consider two aspects of it. In the fol-
lowing section, we discuss efforts to build distributed computers specifically 
designed to process large quantities of data. In the final section, we discussed 
the work of the Advanced Data Mining and Integration Research for Europe 
(ADMIRE) project, which is seeking to develop software tools and techniques 
for advanced distributed data mining.

7.2  DATA-INTENSIVE COMPUTERS

Over the past two decades, the use of massively parallel computer architec-
tures as the basis for all supercomputing systems has become dominant. This 



Data-IntenSIve computerS    133

is true both for capability computing problems (such as weather modeling), 
which tend to be run on tightly coupled parallel systems (traditional super-
computers), and also for capacity computing problems (such as particle physics 
event processing), which tend to be run on highly distributed parallel systems 
(grid computing systems).

Neither of these types of system are particularly good at processing large 
quantities of coupled data that may be stored in databases. The traditional 
supercomputers are largely optimized for numerical calculations and lack 
input/output (I/O) bandwidth from disk to processor. In these systems, data 
stored on disk are often stored on a coupled storage area network (SAN) 
system, which is not designed for rapid random access reads and writes during 
computation. The grid computing systems often have local disks but are con-
nected together over low-cost networking components and, while very good 
at processing uncoupled data, display poor performance when individual 
systems have to communicate between each other over any distance. For this 
reason, over the past decade, a third type of massively parallel architecture 
has been mooted that is specifically designed to explore large amounts of 
scientific and other data. Such systems are called data-intensive computers.

During the 1990s, the concept of Beowulf clusters became popular. Such 
clusters were built from cheap commodity components (often simply racks of 
cheap PCs) and were designed to fill the gap between desktop PCs and much 
more expensive supercomputers. Jim Gray, a Microsoft Research scientist, 
now sadly deceased, took the original Beowulf concept and, working with Prof. 
Alex Szalay of the Johns Hopkins University and colleagues, created the 
concept of the GrayWulf data-intensive computer. This system was specifically 
designed for large-scale data-intensive scientific computing using databases to 
store the scientific data and is reported by Szalay et al. (2010). The University 
of Edinburgh is currently building a system that takes this idea further and 
explores the most effective balance of storage technologies for low-power 
scientific data processing.

Gene Amdahl, famous for his law describing the relationship between par-
allelized and sequential parts of a software application (Amdahl, 2007), also 
published three further measures related to the design of a well-balanced 
computer system. These are the following:

• Amdahl Number: the ratio of the number of bits of sequential I/O per 
second capable of being delivered to the processor divided by the number 
of instructions per second

• Amdahl Memory Ratio: the ratio of bytes of memory to instructions per 
second

• Amdahl IOPS Ratio: the number of I/O operations capable of being 
performed per 50,000 processor instructions

In an ideal well-balanced computer system, the Amdahl number, memory 
ratio, and I/O operations per second (IOPS) ratio will be close to one. In most 



134    Large-ScaLe Data-IntenSIve computIng

modern systems, this is not the case. For some classes of application, this does 
not matter. For example, many supercomputing applications have very low 
(O(10−5)) Amdahl numbers because they are focused on processing numerical 
data held in cache memory. However, for large data sets held on disk, perhaps 
in databases, an Amdahl number close to one is vital. Data-intensive computer 
designs attempt to optimize the Amdahl number by marrying low-power proces-
sors with large amounts of fast disk (including solid state disk). This not only 
makes better use of the available procession power but also vastly reduces 
energy consumption—a key design factor as data volumes increase worldwide.

However, well-designed hardware systems are only part of the data-
intensive computing story. In order to manipulate and analyze the data on such 
systems, it is vital to employ advanced software tools, and leading European 
research in this area is discussed in the next section.

7.3  ADVANCED SOFTWARE TOOLS AND TECHNIQUES

7.3.1  Data Mining and Data Integration

Using computers to search digital data for patterns leading to new information 
embedded in whatever the data represent has become a widely used method-
ology. Generally referred to as data mining, over the past 20 years, the tech-
niques associated with it have become commonplace in both the scientific and 
business domains. However, most data mining is performed by bringing data 
together in data warehouses of some description and then mining it for infor-
mation. In reality, we live in a world of highly distributed data, and integrating 
data in data warehouses is time-consuming and difficult to automate.

Over the past decade, a key research theme at The University of Edinburgh 
has been the creation of a framework for the management and integration of 
highly distributed data that may be stored in databases or flat files. This frame-
work, called the Open Grid Services Architecture–Data Access and Integration 
(OGSA-DAI) framework,1 has been designed to simplify the use of highly 
distributed data by scientific and business applications. The framework allows 
highly distributed data sets to be accessed over the Internet and the data 
integrated for analysis. The framework supports distributed database query 
processing and has many features that support optimization of such queries. 
OGSA-DAI allows applications to create virtual data warehouses. This is an 
important feature as it simplifies many of the social issues, such as ownership 
and access control, associated with data mining and the federation of data from 
multiple locations.

Although OGSA-DAI facilitates the federation of distributed data, it does 
little to support the analysis of that data. As discussed in Section 7.1.1, we are 
witnessing the creation of unprecedented amounts of digital data. In order to 

1 The OGSA-DAI software and detailed information are available at http://www.ogsa-dai.org.uk.

http://www.ogsa-dai.org.uk


aDvanceD Software tooLS anD technIqueS    135

successfully use that data, we need automated methods of analysis that allow 
us to mine that data for information. The ADMIRE Project2 has been designed 
to explore advanced scalable distributed computing technologies for data 
mining. The remainder of this chapter discusses the ADMIRE data mining 
framework, which is built on top of OGSA-DAI.

7.3.2  Making Data Mining Easier

The premise behind ADMIRE is to make distributed data mining easier for 
those who use it and for those who have to provide the data services they 
make use of. As such, the project has carefully thought about the makeup of 
the groups of people who engage in data mining projects. A detailed descrip-
tion of the ADMIRE architecture can be found in the literature (Hume et al., 
2009). Each data mining community can be partitioned into three groups of 
experts:

• Domain Experts. These experts work in the particular domain where the 
data mining and integration (DMI) activities are to take place. They pose 
the questions that they want to see their data answer, question such as 
the following: “How can I increase sales in this retail sector?” “What are 
the correlations in these gene expression patterns?” or “Which geographic 
localities will suffer most in times of flooding?” They are presented with 
DMI tools optimized and tailored to their domain by the following two 
groups of experts. Many of the technical and operational issues are hidden 
from them.

• DMI Experts. These experts understand the algorithms and methods that 
are used in DMI applications. They may specialize in supporting a particu-
lar application domain. They will be presented with a tool set and a 
workbench, which they will use to develop new methods or to refactor, 
compose, and tune existing methods for their chosen domain experts (or 
class of domain experts). DMI experts are core users of DISPEL (the 
ADMIRE language) and use this to develop new methods that can be 
installed in the ADMIRE context. They are aware of the structures, rep-
resentations, and type systems of the data they manipulate.

• Data-Intensive Distributed Computing (DIDC) Engineers. These experts 
focus on engineering the implementation of the ADMIRE platform. Their 
work is concerned with engineering the software that supports DMI 
enactment, resource management, DMI system administration, and lan-
guage implementations, and which delivers interfaces for the tools that 
the DMI and domain experts will use. A DIDC engineer’s role includes 
the dynamic deployment, configuration, and optimization of the data’s 
movement, storage, and processing as automatically as possible. DIDC 
engineers also organize the library of data handling and data processing 

2 Detailed information on ADMIRE is available at http://www.admire-project.eu.

http://www.admire-project.eu




aDvanceD Software tooLS anD technIqueS    137

• Canonical Intermediate Model Level. This intermediate level is used to 
provide textual representations of DMI process specifications. These can 
be generated by the tools or by a DMI expert or DIDC engineer. These 
intermediate representations, in ADMIRE written in a new language 
called DISPEL, which the project has created, are then sent to an 
ADMIRE Gateway as a request for enactment. The gateway model is 
fundamental to ADMIRE because it decouples the complexity and 
diverse user requirements at the tools level from the complexity of the 
enactment level. It does this through the use of a single canonical domain 
of discourse represented by the DISPEL language.

• Enactment Level. The enactment level is the domain of the DIDC engi-
neer. It deals with all of the software and process engineering necessary 
to support the full range of DMI enactments allowed by the DISPEL 
language and mediated through an ADMIRE Gateway. In ADMIRE, 
much of this level has been supported by the use of OGSA-DAI. By 
insulating the domain and DMI experts from this level, DIDC engineers 
can focus on delivering high-quality solutions to potentially complex 
issues while ensuring they are generic solutions that can be reused by 
many DMI domains.

This section is entitled “Making Data Mining Easier,” which is the motto 
of the ADMIRE project. It would be wrong to interpret this motto as meaning 
it is simple to do data mining using these technologies. What ADMIRE deliv-
ers is easy-to-use patterns and models to express highly complex data mining, 
which would otherwise be extremely difficult to perform once and impossible 
to perform repeatedly.

7.3.3  The ADMIRE Workbench

The ADMIRE Workbench is central to user engagement with ADMIRE. It is 
described in detail by Krause et al. (2010). Figure 7.2 shows how the various 
workbench components are arranged and how they relate to an ADMIRE 
Gateway and the enactment level below this.

The components of the workbench are used to create complex data mining 
analyses by the domain experts and DMI experts. Much of the software engi-
neering work to provide these tools is undertaken by DIDC engineers.

Workbench tools are used by domain or DMI experts to explore and 
analyze data (the Chart Visualiser), construct complex DMI workflows visually 
and edit documents written in the DISPEL language (the Process Designer), 
inspect and use context-related semantic information (the Semantic Knowledge 
Sharing Assistant [SKSA]), submit workflows to an ADMIRE Gateway and 
monitor its progress (the Gateway Process Manager [GRM]), access and query 
an ADMIRE registry (the Registry Client and Registry View), and visualize the 
data mining results (the DMI Models Visualiser and Chart Visualiser).





referenceS    139

7.4  CONCLUSION

There are many aspects to large-scale data-intensive computing and this 
chapter has only scratched the surface of this vast domain. The digitization of 
the world around us continues to gather pace. We are reaching a tipping point 
where traditional methods of data management and analysis will no longer be 
tenable. This has profound implications for how we manage, understand, and 
benefit from the data around us. In tandem with the vast increase in data, the 
world faces an uncertain future with regard to energy production and usage. 
It seems natural that we should look into low-power options for data-intensive 
computing, and this chapter has discussed some of the original work in  
this area currently being undertaken at the University of Edinburgh and 
elsewhere.

The computational technologies required to optimally store data are only 
one part of the story, however. We urgently need new data-intensive analysis 
technologies to make sense of all of the data. The latter part of this chapter 
therefore focused on the ADMIRE project, which has designed a framework 
to facilitate next-generation distributed data mining through a carefully 
designed architecture that separates the data domain experts from the data 
management experts (the so-called DMI experts and DIDC engineers) such 
that complexity can be managed and experts encouraged to focus on their 
specialisms.

The importance of distributed data-intensive computing will continue to 
expand over the next decade, delivering key insights to scientific research and 
business analysis. Through the work of projects like ADMIRE, Europe is well-
placed to capitalize on this exciting new discipline.

ACKNOWLEDGMENTS

The ADMIRE Project is funded under the European Commission’s Seventh 
Framework Programme through Grant No. ICT-215024 and is a collaboration 
between the University of Edinburgh, the University of Vienna, Universidad 
Politécnica de Madrid, Ústav informatiky, Slovenská akadémia vied, Fujitsu 
Laboratories of Europe, and ComArch S.A.

While preparing the summary of ADMIRE presented here, I have drawn 
on the work of many project members and many of the project’s deliverables. 
I am grateful to my many colleagues in ADMIRE for all of their hard work 
on this interesting and engaging research project.

REFERENCES

G. Amdahl. Computer architecture and Amdahl’s law. IEEE Solid State Circuits Society 
News, 12(3):4–9, 2007.



140    Large-ScaLe Data-IntenSIve computIng

A. Hume, L. Han, J. I. van Hemert, et al. ADMIRE—Architecture. Public report D2.1, 
The ADMIRE Project, Feb 2009.

A. Krause, I. Janciak, M. Laclavik, et al. ADMIRE—Tools development progress 
report. Deliverable report D5.5, The ADMIRE Project, Aug 2010.

A. Szalay, G. Bell, H. Huang, et al. Low-power Amdahl-balanced blades for data inten-
sive computing. ACM SIGOPS Operating Systems Review, 44(1):71–75, 2010.



Chapter 8
A Topology-Aware 

Evolutionary  
Algorithm for Reverse-

Engineering Gene 
Regulatory Networks

Martin Swain
Institute of Biological, Environmental and Rural Sciences,  

Aberystwyth University, Ceredigion, United Kingdom

8.1  INTRODUCTION

This chapter is concerned with modeling and simulating the dynamics of  
gene regulatory networks (GRNs). Gene regulation refers to processes that cells 

141

Camille Coti

Johannes Mandel

Werner Dubitzky

LIPN, CNRS-UMR7030, Université Paris 13, Villetaneuse, France

Roche Diagnostics GmbH, Penzberg, Germany

School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski, 
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



142    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

use to create functional gene products, in particular proteins, from the informa-
tion stored in genes. Gene regulation is essential for life as it increases the 
versatility and adaptability of an organism by allowing it to express or synthesize 
protein when needed. While aspects of gene regulation are well understood, 
many open research questions still remain (Davidson and Levin, 2005).

The modeling of dynamic biomedical phenomena such as gene regulation 
is inspired by the approach taken in physics, where models are frequently 
constructed to explain existing data, then predictions are made, which again 
are compared to new data. If a sufficient correspondence exists, it is claimed 
that the phenomenon has been understood. The ability to construct, analyze, 
and interpret qualitative and quantitative aspects of gene-regulation models 
is becoming increasingly important (Hasty et al., 2001). In contrast to static 
gene expression data, the use of dynamic gene expression data with modeling 
and simulation helps to determine stable states of gene regulation in response 
to a condition or stimulus as well as the identification of pathways and net-
works that are activated in the process.

In this chapter, we study the process of reverse-engineering GRNs from 
time-series gene expression data sets. The idea is to discover an optimal set of 
parameters for a computational model of the network that is able to ade-
quately simulate the behavior described by the gene expression data sets. We 
investigate three different mathematical methods used in computational 
models that are based on ordinary differential equations. Each system of dif-
ferential equations has its own characteristics, which lead to biases and arti-
facts in the network models (Swain et al., 2010). We apply these three 
mathematical methods to a recent biological data set generated by Cantone 
et al. (2009) specifically for in vivo assessment of reverse-engineering and gene 
network modeling approaches. The model network presented by Cantone  
et al. (2009) is a relatively small network. However, such small GRNs can 
display complex nonlinear behavior due to the various positive and negative 
feedback loops that may exist between genes in the network.

The mathematical models we investigate require a significant number of 
parameters to be fine-tuned in order for the models to accurately simulate real 
biological network behavior. This is a combinatorial optimization problem that 
often requires considerable computational resources depending on the size 
and complexity of the network being investigated. We use a reverse-engineering 
method based on evolutionary algorithms to search through the parameter 
space and to optimize the values of the parameters in the mathematical models. 
In the models, there are at least four parameters to be optimized per gene in 
the network. Each gene may influence the behavior of other genes in the 
network in complex ways that depend on the nature of the feedback loops. In 
addition, depending on the mathematical model used, very small variations in 
a single parameter value can have quite a dramatic effect on the overall 
network behavior. There may therefore be a great variation in the quantity of 
computing power required to optimize parameter values in different networks 
and in different mathematical models. In order to take advantage of available 



METHOdOLOGY    143

computational resources, we have implemented our parallel evolutionary algo-
rithms using QosCosGrid-OpenMPI (QCG-OMPI).

QCG-OMPI was designed to enable parallel applications to run across 
widely distributed computational resources owned and secured by different 
administrative organizations (Coti et al., 2008). The QCG-OMPI middleware 
is described further in Chapter 9 of this book. An important feature of QCG-
OMPI that we have used in this study is its ability to support topology-aware 
applications: Just as complex dynamical systems may consist of many interde-
pendent physical parts, it is also possible that computational models of complex 
dynamical systems can be decomposed into interdependent functional com-
ponents that together comprise a topology-aware application; the connections 
between these components define a specific topology that can be matched to 
the distributed resources available on a computational grid infrastructure. 
Topology-aware middleware, such as QCG-OMPI, are designed to efficiently 
support the process of matching topology-aware applications to available 
networked resources.

This chapter is organized as follows. First, we describe our reverse-
engineering methodology in detail, including the different mathematical 
methods, our optimization approach, and QCG-OMPI. Our results section is 
divided into two subsections, the first describing how the application scales 
over distributed resources geographically separated by hundreds of kilome-
ters, and the second demonstrates the accuracy of models reverse engineered 
using the different mathematical methods. Finally, we conclude with a summary 
of our main results.

8.2  METHODOLOGY

In this section, we first describe a small synthetic GRN in yeast (Cantone  
et al., 2009) that we used in our reverse-engineering studies. Subsequently, we 
outline three systems of equations generally used for modeling GRNs. We then 
describe QCG-OMPI, which is the novel topology-aware Message Passing 
Interface (MPI) that we used to implement the communications in our appli-
cation, and finally, we give the details of our particle swarm optimization (PSO) 
method that we applied to the problem of reverse-engineering GRNs.

8.2.1  Modeling GRNs

The strengths and weaknesses of the mathematical methods are highlighted 
by using the methods to reverse engineer a real biological network.

8.2.1.1  Case Study: A Yeast Synthetic Network  Cantone et al. (2009) 
synthetically constructed a GRN in yeast to facilitate an in vivo assessment of 
various reverse-engineering and gene network modeling approaches, includ-
ing approaches based on ordinary differential equations.



144    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

Cantone et al. (2009) present expression profiles of the network genes after 
a shift from a glucose-containing medium to a galactose-raffinose-containing 
medium; this is called the switch-on time series; and after a shift from galactose-
raffinose to glucose-containing medium: the switch-off time series. In this 
study, we used the first 100 minutes of these two data sets, excluding the first 
10-minute interval during which the washing steps and the subsequent medium 
shift are performed. After 100 minutes, the biological system is perturbed, and 
Cantone et al. (2009) used time-delay terms to model this perturbation, which 
are not present in the basic forms of the equations we study here.

The network includes a variety of regulatory interactions, thus capturing 
the behavior of larger eukaryotic gene networks on a smaller scale. It was 
designed to be minimally affected by endogenous genes and to transcribe its 
genes in response to galactose. While the yeast GRN appears relatively small 
(see Fig. 8.1), it is actually quite articulated in its interconnections, which 
include regulator chains, single-input motifs, and multiple feedback loops.

When reverse engineering this GRN, we assume the basic topology of the 
network; that is, we know which genes are connected, although we do not know 
if the type of interaction is activating or repressing. The optimization method 
we use (see Section 8.2.3) then estimates the parameters of a mathematical 
method. By numerically solving the differential equations with a set of param-
eters, we can simulate the dynamic behavior of the model, and if the output 
of our simulations precisely reproduce the time-series data sets recorded by 
laboratory scientists, then we can claim that our model has reverse engineered 
the GRN.

The nonlinear differential equations of the three modeling methods inves-
tigated in this study describe the mutual activating and repressing influences 
of genes in a GRN at a high level of abstraction. In particular, it is assumed 

Figure 8.1  The yeast synthetic network presented by Cantone et al. (2009), with the activating 
↑ and repressing ⊥ regulatory interactions.

X2X1

X4

X5

X3

Cbf 1

Swi5

Ash1

Gal80

Gal 4



METHOdOLOGY    145

that the rate of gene expression depends exclusively on the concentration of 
gene products arising from the nodes (genes) of the GRN. This means that the 
influence of other molecules (e.g., transcription factors) and cellular processes 
(translation) is not taken into account directly. Even with these limitations, 
dynamic GRN models of this kind can be useful in deciphering basic aspects 
of gene regulatory interactions.

The three methods we have studied have been widely used to model 
dynamic GRNs. One major advantage of all three methods lies in their simple 
homogeneous structures, as this allows the settings of parameter discovering 
software to be easily customized for these structures. In addition, all three 
modeling methods either already have the potential to describe additional 
levels of detail or their structures can be easily extended for this purpose.

The three methods describe dynamic GRN models by means of a system 
(or set) of ordinary differential equations. For a GRN comprising N genes, N 
differential equations are used to describe the dynamics of N gene product 
concentrations, Xi with i = 1, . . . , N. In all three methods, the expression rate 
dXi/dt of a gene product concentration may depend on the expression level of 
one or more gene products of the genes Xj, with j = 1, . . . , N. Thus, the gene 
product concentration Xi may be governed by a self-regulatory mechanism 
(when i = j) or it may be regulated by products of other genes in the GRN.

In the following sections, we introduce the three mathematical modeling 
methods in some detail.

8.2.1.2  The Artificial Neural Network (ANN) Method  Vohradsky (2001) 
introduced ANN as a modeling method capable of describing the dynamic 
behavior of GRNs. The way this method represents and calculates expression 
rates depends on the weighted sum of multiple regulatory inputs. This additive 
input processing is capable of representing logical disjunctions. The expression 
rate is restricted to a certain interval where a sigmoidal transformation maps 
the regulatory input to the expression interval. ANNs provide an additional 
external input, which has an influence on this transformation in that it can 
regulate the sensitivity to the summed regulatory input. Finally, the ANN 
method defines the degradation of a gene product on the basis of standard 
mass action kinetics.

Formally, the ANN method is defined as

 
dX
dt

v f w X k X v ki
i ij j

j

N

i i i i i i= ⋅ −








 − >

=
∑

1

0ϑ ϑ , , .  (8.1)

The parameters of the ANN method have the following biological 
interpretations:

N: number of genes in the GRN to be modeled; the genes of the GRN are 
indexed by i and j, where i, j = 1, . . . , N



146    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

vi: maximal expression rate of gene i
wij: strength of control of gene j on gene i; positive values of wij indicate 

activating effects, while negative values define repressing effects
ϑi: influence of external input on gene i; influences the responsiveness or 

speed of the reaction (Vohradsky, 2001) and represents the weighted 
sum of all inputs, which gives an expression rate equal to half of the 
maximal transcription rate vi

f: represents a nonlinear sigmoid transfer function modifying the influ-
ence of gene expression products Xj and external input ϑi to keep the 
activation from growing without bounds

ki: degradation of the ith gene expression product

In the ANN method, the parameters wij can be intuitively used to define 
activation and inhibition by assigning positive or negative values, respectively. 
Here, small absolute values indicate a minor impact on the transcription 
process (or a missing regulatory interaction), and large absolute values indi-
cate a correspondingly major impact on the transcription process. However, 
one should be aware that the multiple regulatory inputs required in the case 
of coregulation can compensate each other due to their additive input 
processing.

8.2.1.3  TheS-System (SS) Method  Savageau (1976) proposed the syner-
gistic system or SS as a molecular network model. Modeling GRNs with the 
SS, the expression rates are described by the difference of two products of 
power law functions, where the first represents the activation term and the 
second the degradation term of a gene product Xi. This multiplicative input 
processing can be used to define logical conjunctions for both the regulation 
of gene expression processes and for the regulation of degradation processes. 
The SS method has no restrictions in the gene expression rates and thus does 
not implicitly describe saturation.

Formally, the SS method is defined as

 
dX
dt

X X g hi
i j

g

j

N

i j
h

j

N

i i ij ij
ij ij= − > ∈

= =
∏ ∏α β α β

1 1

0, , , .�  (8.2)

The parameters of the SS method have the following biological 
interpretations:

N: number of genes in the GRN to be modeled; the genes of the GRN 
are indexed by i and j, where i, j = 1, . . . , N

αi: rate constant of activation term; in SS GRN models, all activation 
(upregulation) processes of a gene i are aggregated into a single 
activation term



METHOdOLOGY    147

βi: rate constant of degradation term; in SS GRN models, all degrada-
tion processes of a gene i are aggregated into a single degradation 
term

gij, hij: exponential parameters called kinetic order describing the interactive 
effect of gene j on gene i; positive values of gij indicate an activating 
effect on the expression of gene i, negative values an inhibiting effect; 
similarly, a positive hij indicates increasing degradation of the gene 
product Xi; a negative hij indicates decreasing degradation

The behavior of SS models is mainly determined by the exponent values gij 
and hij. Similar to the ANN method, high absolute values define strong influ-
ence, whereas small absolute values indicate weak influence. However, the 
dynamics can become particularly complicated when describing inhibiting 
dependencies using negative exponent values. Here, the effect depends strongly 
on the actual concentration ranges of the inhibitor, which can introduce sin-
gular behavior at near-zero concentrations.

The parameters used in SS models have a clear physical meaning and can 
be measured experimentally (Hlavacek and Savageau, 1996), yet they describe 
phenomenological influences, as opposed to stoichiometric rate constants in 
general mass action (GMA) systems (Crampin et al., 2004). The SS method 
generalizes mass action kinetics by aggregating all individual processes into a 
single activation and a single degradation term (per gene). In contrast, the 
GMA system defines all individual processes k with k = 1, . . . , R with the sum 
of power law functions (Almeida and Voit, 2003).

8.2.1.4  The General Rate Law of Transcription (GRLOT) Method  The 
GRLOT method has been used to generate benchmark time-series data sets 
to facilitate the evaluation of different reverse-engineering approaches 
(Mendes et al., 2003; Wildenhain and Crampin, 2006). GRLOT models multi-
ply individual regulatory inputs. Activation and inhibition are represented by 
different functional expressions that are similar to Hill kinetics, which allow 
the inclusion of cooperative binding events (Mendes et al., 2003). Identical to 
the ANN, the degradation of gene products is defined via mass action 
kinetics.

Formally, the GRLOT method is defined as

 
dX
dt

v
Ki

I Ki

A
A Ka

k Xi
i

j
n

j
n

j
n

j

k
n

k
n

k
n

k

i

j

j j

k

k k
=

+







×

+






−∏ ∏ ii i j j iv Ki Ka k, , , .> 0  (8.3)

The parameters of the GRLOT method have the following biological 
interpretations:

vi: maximal expression rate of gene i
Ij: inhibitor (repressor) j



148    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

Ak: activator k; the number of inhibitors I and the number of activators 
A can be related to the total number of genes by I + A ≤ N

Kij: concentration at which the effect of inhibitor j is half of its saturation 
value

Kak: concentration at which the effect of activator k is half of its saturation 
value

nj, nk: regulate the sigmoidicity of the interaction behavior in the same way 
as Hill coefficients in enzyme kinetics

ki: degradation of the ith gene expression product

The GRLOT method uses two inverse functional forms to describe activat-
ing and inhibiting influences, both of which involve two parameters. For 
example, in the case of activation, each individual dependency is described 
with a Hill equation where the Hill exponent nij determines the sigmoid 
response curve to varying concentration levels of the regulating molecule. 
Furthermore, the second parameter, Kak, allows the concentration of the regu-
lator molecule to be specified, which gives half of its maximal effect on the 
expression rate. Consequently, high exponent values, together with low Kak 
values, defined for a regulator molecule, indicate that already low concentra-
tion levels have a strong activating effect on the transcription process, while, 
on the other hand, low exponent values in combination with high Kak values 
require high concentration levels of the regulator molecule for effective 
activation.

Having discussed the mathematical approaches for modeling GRNs, we 
now outline the computational techniques we developed for reverse engineer-
ing these models.

8.2.2  QCG-OMPI

QCG-OMPI (Coti et al., 2008) is an MPI implementation targeted to compu-
tational grids, based on OpenMPI (Gabriel et al., 2004) and relying on a set 
of grid services that provide advanced connectivity techniques. Although 
QCG-OMPI can be used as a stand-alone component (and this is how we used 
it for the application presented in this chapter), it is also a key component of 
the QosCosGrid (QCG) middleware for which it was designed (Kurowski et 
al., 2009; Bar et al., 2010).

QCG-OMPI is designed to be topology aware. It supports groups of proces-
sors that communicate to each other according to different connective topolo-
gies. A novel and important feature of QCG-OMPI is that an application is 
able to adapt to different application topologies according to the set of 
resources supplied at run time. Also, any number of communication layers can 
be defined. The user has complete flexibility and control in terms of the 
number of communicators and different grains of parallelism.





150    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

Additional functionality is available if QCG-OMPI is deployed on the full 
QCG multiuser infrastructure. In this case, users specify the technical capabili-
ties required for the different process groups, including the properties of the 
network connecting the different groups. In the QCG, each process group is 
mapped to a computing resource template that describes the properties of the 
machines it requires for correct execution. A computing resource template is 
an instantiation of an XML schema describing the properties of computing 
resources. To enable a flexible approach to scheduling, and to take advantage 
of the ability of topology-aware QCG-OMPI applications to adapt to available 
resources, the computing resource template is described in terms of ranges. 
For example, the computing resource template requested by both PG1 and 
PG3 might be specified as follows:

[Clock rate in the range of 2 . . . 3 GHz]
[Memory in the range of 1 . . . 2 GB]
[Free disk space in the range of 2 . . . ∞ GB]

These requirements are then passed to the QosCosGrid Scheduler through 
the environmental variable QCG_TOPOLOGY_DEPTHS.

When used on the QCG infrastructure, process groups are arranged in a 
process communication group (PCG) topology, where it is assumed that all 
processes within a PCG would like to have all-to-all interconnections with 
certain properties. The quantitative properties of these interconnections are 
specified by means of the network resource templates (a network resource 
template is an instantiation of an XML schema describing possible network 
properties).

For instance, PCG1 (one of the small inner circles) contains only processes 
of PG1, which means that all the processes of PG1 must have all-to-all inter-
connections as described in the PCG1’s network resource template. On the 
other hand, PCG4 (the large outer circle) contains three process groups—PG1, 
PG2, and PG3, which means that all the processes of these three process 
groups must have all-to-all interconnections as described in the PCG4’s 
network resource template. Given any two processes, we can determine the 
quality of their interconnection by looking into the smallest circle (PCG)  
that contains these two processes. The network templates are used by the 

TABLE 8.1  Array of Colors Corresponding to the Topology Depicted in Figure 8.2

Process Group PG1 PG1 PG2 PG2 PG3 PG3

Rank 0 1 2 3 4 5
Local rank 0 1 0 1 0 1
Depth 2 2 2 2 2 2
Colors (depth 1) PCG4 PCG4 PCG4 PCG4 PCG4 PCG4
Colors (depth 2) PCG1 PCG1 PCG2 PCG2 PCG3 PCG3



METHOdOLOGY    151

QosCosGrid Scheduler, along with the computing resource templates, when 
allocating network and computing resources for an application.

An example of the topology depicted in Figure 8.2 is given in Table 8.1. This 
is valid whether QCG-OMPI is used as a stand-alone component or on the 
QCG infrastructure. In this example, each process group contains two pro-
cesses. The application’s processes, at run time, can obtain the topology descrip-
tion (represented by Table 8.1) by obtaining the appropriate MPI attributes 
from the run-time environment. For example, the MPI code to fetch these 
attributes from the run-time environment is

/* depths is an array of integers of size NPROCS */
MPI_Attr_get(MPI_COMM_WORLD, QCG_TOPOLOGY_DEPTHS, depths, 
&flag);

Instructions within the program inform processes what they have to do, 
regarding their color at a given depth, and what computation pattern they 
should adopt. Processes can also use colors to adapt their communication pat-
terns. In particular, they can build communicators that fit the requested com-
munication groups using the MPI routine MPI_Comm_split().

The color used by MPI_Comm_split () is the integer translation of the QCG 
alphanumeric color, given by the QCG_ColorToInt() routine. Processes that 
do not belong to any communication group at a given depth are assigned the 
MPI_UNDEFINED color and create an invalid communicator, as specified by 
the MPI standard.

QCG-OMPI presents the topology to the application as an array containing 
(for each process indexed by its rank in the global communicator MPI_COMM_
WORLD) strings that represent the names of communication groups. Thus, each 
process in the system is able to determine to which groups it belongs in a very 
simple way. QCG-OMPI also provides a conversion function to create a unique 
identifier per communication group name, suitable to be used for the MPI_
Comm_split() function of the MPI standard, enabling a simple creation of 
individual communicators per communication group. Using these topology-
aware process groups, populations can evolve within each process group and 
communicate using local communicators, and use the global MPI_COMM_
WORLD communicator or other user-defined communicators, for cross-group 
communications only.

The communication middleware of QCG-OMPI takes care of establishing 
the communication links on demand. This happens transparently for the appli-
cation developer, even if the peers of the communication are located in dif-
ferent clusters, separated by firewalls, or if the communication involves many 
peers in many different locations (e.g., when doing a collective operation on 
a communication group instantiated as a communicator spanning multiple 
sites). Thus, programming parallel applications in QCG-OMPI remains natural 
for MPI users, and it becomes simple to discover which resources have been 
allocated to which communication group (an addition to the MPI standard 
proposed by QCG-OMPI).



152    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

8.2.3  A Topology-Aware Evolutionary Algorithm

Evolutionary algorithms are an approach inspired by biological evolution to 
iteratively evolve and optimize, according to some criteria, a population of 
computing objects, where each individual in the population is a potential solu-
tion to the problem at hand (Holland, 1992; Bäck, 1996). The individuals of  
an evolutionary algorithm may be organized around specific population  
structures or topologies. We distinguish two approaches: island evolutionary 
algorithms and cellular evolutionary algorithms.

1. Island evolutionary algorithms are based on a spatial or topological 
organization in which a genetic population is divided into subpopulations 
(islands and regions) that are optimized semi-independently from each 
other. In this approach, individuals periodically migrate between island 
subpopulations in order to overcome the problems associated with a 
single population becoming stuck in a local minima and thus failing to 
find the global minimum.

2. Cellular evolutionary algorithm models are based on a spatially distrib-
uted population in which genetic interactions may take place only in the 
closest neighborhood of each individual (Gorges-Schleuter, 1989). Here, 
individuals are usually disposed on a lattice topology structure.

PSO is a population-based stochastic optimization technique that shares 
many similarities with other evolutionary computation techniques (Kennedy 
and Eberhart, 1995). An appealing feature of PSO is that it requires relatively 
few parameters when compared to evolutionary algorithms, such as genetic 
algorithms, that use transformations such as mutation, crossover, and so on, to 
generate solutions. It is this simplicity that encouraged us to apply it to reverse-
engineering GRNs.

In PSO, the population of potential solutions consists of particles that “fly” 
through the problem space by following a trajectory that is influenced by the 
current optimal solution, the particle’s own best solution, and, in our imple-
mentation, the optimal solution of its immediate neighbors.

As with other evolutionary algorithms, PSO is initialized with a group of 
random solutions and then searches for optima by updating generations. The 
generations are updated at every iteration by using Equation 8.4 to calculate 
the particles’ current velocities:

 v v c R r r c R l r c R g ri i i
best

i
best

i
best

i= + −( ) + −( ) + −( )1 1 2 2 3 3  (8.4)

 r r vi i i= + .  (8.5)

Here R1, R2, and R3 are random numbers between 0 and 1, and the constants 
c1, c2, and c3 represent learning factors that in PSO algorithms are usually set 



METHOdOLOGY    153

to 2. The optimal or best current solution or fitness that particle i has achieved 
is denoted by ri

best and the optimal or best current solution of its local neighbors 
is denoted by lbest. Finally, the optimal or best current value obtained by any 
particle in the subpopulation is given by gbest. Periodically, using the message 
passing functions implemented by QCG-OMPI, the particles communicate 
their current optimal or best solutions, ri

best, with the rest of the population and 
receive values for lbest and gbest.

The PSO algorithm is one of a number of evolutionary algorithms that we 
implemented in a program called CellXPP. CellXPP is written in C, and while the 
QCG-OMPI routines are handled by the C program, the fitness function uses a 
Python interface to call XPPAUT,1 a program maintained by G. Bard Ermentrout 
to solve the differential equations. We used XPPAUT because it is a well-
established piece of software with a large user community and, more importantly, 
because it provides a command-line interface and is easy to install on a variety of 
different machine architectures. The Python interface was used to convert the 
current parameter set of a particle into an execution file (with the correct set of 
differential equations for XPPAUT) and then process the output of XPPAUT 
using Equation 8.6 to calculate a fitness value. Python was used because of its 
scripting capabilities that allowed us to quickly experiment with new sets of dif-
ferential equations and different approaches to calculate the fitness.

The application consists of two layers or PCGs that combine features of 
both cellular and (cooperative) island evolutionary algorithms, thus giving the 
application a two-layer topology. In this setup, the algorithm is aware of the 
two layers; hence, we call it a topology-aware evolutionary algorithm. More 
frequent communications, at every iteration, take place in the lower layer (cel-
lular aspect of the combined evolutionary algorithm approach), and less fre-
quent communications, perhaps every 100 iterations, take place in the higher 
layer (insular aspect). These are shown in Figure 8.3 with a ring topology used 
for communications between island subpopulations, while in the cellular layer, 
individuals communicate with their immediate neighbors.

In Figure 8.3, the evolutionary algorithm is composed of three subpopula-
tions, which may be distributed over any number of physical locations. However, 
in general, the algorithm can divide the population into one or more subpopu-
lations. A subpopulation may run over multiple physical locations, and it is 
also possible for multiple subpopulations to run at a single physical location. 
The exact distribution of the population is left to the user to decide and may 
be specified at run time. The topology-aware functionality of QCG-OMPI is 
then able to adapt the application to the specified communication topology. 
Normally, due to the relatively frequent communication patterns taking place 
within subpopulations, subpopulations are most efficiently executed on one 
computational cluster at a single physical location.

Time-series gene expression data form the input to our reverse-engineering 
process. We aim to identify model parameters for which the discrepancy 

1 http://www.math.pitt.edu/ bard/xpp/xpp.html.

http://www.math.pitt.edu/<223C>bard/xpp/xpp.html




RESULTS ANd dISCUSSION    155

The topology awareness of the evolutionary algorithm could be extended 
to include a third topology layer that would be used if the fitness calculation 
had to be parallelized. For example, if the machines allocated have multiple 
cores or multiple processors, then one way of implementing the third topology 
layer involves placing all available processes from a machine into a group. The 
topology-aware algorithm would then be able to adapt to each machine, 
depending on the number of cores and processors that it possesses. The three 
layers of the topology-aware algorithm would then include parallelization at 
the machine level, parallelization at the cluster level, and parallelization at the 
cross-cluster or grid level.

8.3  RESULTS AND DISCUSSION

First, we discuss some performance characteristics of the GRN reverse-
engineering application in terms of its computational efficiency and ability to 
scale over distributed resources, then we show the results of our reverse-
engineering experiments with the Cantone et al. (2009) yeast regulatory 
network and the three mathematical methods.

8.3.1  Scaling and Speedup of the Topology-Aware  
Evolutionary Algorithm

Using the topology-aware evolutionary algorithm described in Section 8.2.3, 
we have conducted a number of computational studies on Grid’5000, which is 
an academic, nationwide experimental grid dedicated to research (Cappello 
et al., 2005). In these studies, we used QCG-OMPI as a stand-alone compo-
nent, without any other features of the QCG middleware. For the experiments 
we performed, we were allocated resources for which we were the only user.

We used two sites, located in the cities of Orsay and Bordeaux in France. 
These locations are physically separated by several hundred kilometers. The 
specifications of the clusters are as follows:

• In Orsay, a cluster called GDX was used. It is based on AMD Opteron 
machines with two single-core CPUs running at 2.4 GHz and with 2.0-GB 
memory. For the Orsay cluster experiments, we had 120 cores available in 
60 machines.

• In Bordeaux, a cluster called Bordereau was used. It is based on AMD 
Opteron machines with dual-processor dual-core CPUs running at 
2.6 GHz and 4.0-GB memory. For the Bordeaux cluster experiments, we 
had 120 cores available in 30 machines.

The nodes within each cluster were interconnected by a Gigabit Ethernet 
switch, and the clusters were connected by the Renater French Education and 
Research Network using a 10-Gb/s dark fiber.



156    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

The evolutionary algorithm performs one fitness calculation per CPU core. 
If the algorithm is scaling well, as the number of cores increases, we would 
hope to see the time required to perform a fitness calculation to remain 
constant—so, 200 cores perform 200 fitness calculations in the same time as 
40 cores perform 40 fitness calculations.

Figure 8.4 depicts the results of the five experiments using the two Grid’5000 
clusters. It shows the speedup of the evolutionary algorithm execution and 
depicts the average time to execute an iteration of the evolutionary algorithm 
when running on different clusters with different topologies. At each iteration, 
an individual (or a process running on a different CPU core) performs a  
fitness calculation and communicates the results to its neighboring processes. 
As the number of cores increases, so does the size of the population, which 
results in an increase in the number of fitness calculations performed at each 
iteration.

In Figure 8.4, the graphs labeled “GDX” and “BORD” depict execution 
times of runs performed on a single cluster, corresponding to the Orsay cluster 

Figure 8.4  Speedup results of the evolutionary algorithm using different clusters and compu-
tational resources. Note that the number of cores corresponds to the population size and hence 
the number of fitness calculations performed in an iteration. The graphs are discussed in the 
main text.

Orsay cluster (GDX)

0.25

0.20

0.15

Ti
m

e 
pe

r 
ite

ra
tio

n 
(s

ec
on

d)

0.10

0 50 100

Population size (no. of cores)

150 200 250

Cross-cluster experiment 1

0.25

0.20

0.15

Ti
m

e 
pe

r 
ite

ra
tio

n 
(s

ec
on

d)

0.10

0 50 100

Population size (no. of cores)

150 200 250

Bordeaux cluster (BORD)
0.25

0.20

0.15

Ti
m

e 
pe

r 
ite

ra
tio

n 
(s

ec
on

d)

0.10

0 50 100

Population size (no. of cores)

150 200 250

Cross-cluster experiments 2 and 3

0.25

0.20

0.15

Ti
m

e 
pe

r 
ite

ra
tio

n 
(s

ec
on

d)

0.10

0 50 100

Population size (no. of cores)

150 200 250



RESULTS ANd dISCUSSION    157

(GDX) and the Bordeaux cluster (BORD), respectively. The other two graphs 
(labeled “Cross-cluster experiment 1,” “Cross-cluster experiment 2,” and 
“Cross-cluster experiment 3,” respectively) show three cross-cluster runs per-
formed on both clusters (GDX and BORD).

For the GDX simulations, we initially ran just 1 process per machine, up to 
60 processes; then, we used both CPUs on each machine, up to the full number 
of 120 CPUs. There is a noticeable increase in execution time at the transition 
from one to two CPUs per machine. Up to 60 CPUs, the speedup is linear, and 
above 60 CPUs, the speedup is also approximately linear but with a greater 
time required to perform a full iteration.

For the BORD simulations, we initially restricted processes to run on just 
1 core per machine (30 cores in total). Then, we increased this to 2 (from 30 
to 60 cores), then to 3 (from 60 to 90 cores), and finally, we used all 4 cores 
available in each machine. Here, we observed a sudden increase in execution 
time at the transition from one to two cores per machine—here, the two cores 
are on separate CPUs within the same machine. However, when progressing 
from two to three or four cores, the execution time increases according to the 
number of cores used—in this case, the speedup is not linear. When we 
increased the number of processes per machine, we kept the number of 
network interface cards constant. We speculate that there is congestion at the 
level of network interface cards because several processes are trying to com-
municate through the network using a single network interface card. Thus, the 
communication time within a machine is greater when running several pro-
cesses per machine.

For Cross-cluster experiment 1, we performed a cross-cluster run by trying 
to minimize the number of processes run on each machine. This experiment 
follows a similar pattern to the runs on GDX and BORD: Initially, one process 
is run on a machine using one CPU on each machine on GDX and one CPU 
on BORD (from 30 to 90 cores). Next, we used two BORD CPUs (from 90 
to 120 cores) followed by both the CPUs for the GDX machines (from 140 to 
160 cores). And for the final two points where population size (number of 
cores) is changed from 210 to 240 cores, we used all the available cores in the 
machines. The shape of the graph is similar to that of the individual runs, par-
ticularly the GDX run with its sudden increase in execution time when both 
CPUs are used in each machine. Overall, the execution times are slightly 
longer when running across both clusters; this may be due to the increased 
communication overhead between the different physical locations.

For the Cross-cluster experiments 2 and 3, we used the maximum available 
cores and/or CPUs in each machine; that is, for Cross-cluster experiment 2, we 
used all the available cores per machine on GDX and two cores per machine 
on BORD (this is the lower line in the figure); and for Cross-cluster experi-
ment 3, we ran two processes per machine on GDX and four processes per 
machine on BORD (this is the top curve in the bottom-right graph in Fig. 8.4). 
These simulations show that the speedup is approximately linear. Since the 
speedup is linear, this means that the communication pattern is scalable; that 
is, there is no bottleneck. This implies that our cellular communication pattern 



158    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

is a good architecture for this infrastructure, and that it does not suffer from 
congestion, which might be a problem for more common parallelization 
schemes based on master–worker communication patterns.

It is clear for this application that the cross-cluster communications (hun-
dreds of kilometer distance between Orsay and Bordeaux) are not a limiting 
factor. Instead, the main limitation arises from the use of Python scripts to 
interface with the XPPAUT software through system calls. This is due to the 
relatively inefficient operations caused by running multiple processes on the 
individual machines—when several processes are running on the same machine, 
a situation of concurrency between processes on disk accesses can be created. 
This hinders the sequential parts of the parallel algorithm and thus increases 
the total execution time.

8.3.2  Reverse-Engineering Results

The 10 graphs in Figures 8.5 and 8.6 show the gene expression data of the five 
genes in the Cantone network, CBF1, GAL4, SWI5, GAL80, and ASH1, along 

Figure 8.5  Reverse-engineering results for switch-on data from Cantone et al. (2009). In the 
graphs, the points with error bars depict experimental data and the lines represent the models.

�
�

�

�

�

�

�

�

�

�

�

�
� �

�
�

� �

�

�

�

�

�

CBF1 switch-on

E
xp

re
ss

io
n 

le
ve

l

0.010

0.000
0 20 40 60

Time (minute)
80

GAL4 switch-on

SWI5 switch-on

ASH1 switch-on

GAL80 switch-on

E
xp

re
ss

io
n 

le
ve

l

E
xp

re
ss

io
n 

le
ve

l

E
xp

re
ss

io
n 

le
ve

l

0.03

0.05

0.01

0.01

0.03

0 20 40 60

ANN
GRLOT
SS

ANN
GRLOT
SS

ANN
GRLOT
SS

Time (minute)

Time (minute)

Time (minute)

Time (minute)

80

0

0.00

0.02

0.04

20 40 60 80

E
xp

re
ss

io
n 

le
ve

l

0

0.005

0.020

0.035

20 40 60 80

0 20 40 60 80



RESULTS ANd dISCUSSION    159

with the dynamics predicted by the three methods. The error bars shown are 
for the experimentally derived data of Cantone et al. (2009). The ANN and 
GRLOT methods tend to provide a good match to the experimental data, with 
the ANN method giving the best results in this test. The predictions made by 
the SS method are clearly worse than the other two methods.

The SS method couples unrestricted expression rates with input processing 
based on multiplied exponentials, which, in the experiments we have explored 
in this chapter, frequently leads to extreme sensitivity and unstable dynamics. 
Indeed, it is common that the parameter values automatically generated by 
the evolutionary algorithm for the SS method do not give any solution. This 
is because extremely large exponential terms in the equations lead the integra-
tor to quickly fail. As a result, the evolutionary algorithm tends toward solu-
tions where the influence of the power terms is minimized by setting the values 
of their parameters to values close to zero, giving linear graphs. However, as 
genes may be close to a steady state of expression for much of the time series, 
a linear solution may be a reasonably accurate solution and thus does not 
significantly impact on the overall model output.

Figure 8.6  Reverse-engineering results for switch-off data from Cantone et al. (2009). In the 
graphs, the points with error bars depict experimental data, and the lines represent the models.

�

�
� �

�

�

�

�

� �
�

� �
� �

� � �

�

� � � � � � �

�
�

� �

�

�

�

�
�

� �

�

�

CBF1 switch-off

E
xp

re
ss

io
n 

le
ve

l

0.04

0.06

0.08

0.02

0 20 40 60
Time (minute)

80

GAL4 switch-off

SWI5 switch-off

ASH1 switch-off

GAL80 switch-off

E
xp

re
ss

io
n 

le
ve

l

E
xp

re
ss

io
n 

le
ve

l

E
xp

re
ss

io
n 

le
ve

l

0.020

0.005

0.005

0.015

0.025

0 20 40 60

ANN
GRLOT
SS

ANN
GRLOT
SS

ANN
GRLOT
SS

ANN
GRLOT
SS

Time (minute)

Time (minute)

Time (minute)

Time (minute)

80

0
0.00

0.05

0.10

0.15

20 40 60 80

E
xp

re
ss

io
n 

le
ve

l

0

0.02

0.06

0.10

0.14

20 40 60 80

100

100

100

0 20 40 60 80

100

100



160    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

The three methods are designed to be flexible enough to find phenomeno-
logical expressions for their approximations of experimentally observed 
behavior (Vohradsky, 2001; Crampin et al., 2004). In contrast to GRN models 
based on the SS and GRLOT methods, where regulatory inputs are exponenti-
ated and multiplied, GRN models based on the ANN method weight and sum 
multiple regulatory inputs. An attraction of the SS and GRLOT methods is 
that their input processing accords better than that of the ANN method with 
the fundamentals of reaction kinetics and collision theory (chemical reaction 
rates correlate with the multiplied concentrations of the reactants). However, 
none of the three methods follow strictly the chemical reaction processes 
because a single kinetic equation typically comprises several processes. An 
advantage of the ANN method is that its approach of weighting and summing 
regulatory inputs is relatively robust and avoids the extreme sensitivity of the 
SS method. For example, when the evolutionary algorithm randomly selects 
parameters for the ANN method, they almost always lead to solvable equa-
tions. Of the three methods, it is our experience that the ANN method tends 
to require relatively less computation to achieve an accurate solution and is 
therefore to be preferred over the GRLOT and SS methods. A more detailed 
comparison of the three methods is given in Swain et al. (2010).

8.4  CONCLUSIONS

QCG-OMPI is an effective and efficient framework for distributed evolution-
ary algorithms. The topology awareness of QCG-OMPI simplifies the software 
development process for the evolutionary algorithm, and, although the pro-
grammer must define the functionality of the communication groups within 
the code, there is no need to define the number or size of the groups as these 
are allocated automatically at run time.

Distributed evolutionary algorithms often combine a number of different 
topologies, such as the master–worker topology or the topologies we have 
explored in this chapter. QCG-OMPI makes it easy to define different com-
munication groups in a flexible way so that an evolutionary algorithm can 
automatically adapt to different collections of computing resources. As a 
result, programmers can exploit distributed resources and parallel topologies 
to develop novel approaches to reverse-engineering GRNs. For example, dif-
ferent island populations might use different mathematical methods in order 
to overcome the biases and weaknesses of generating models with just a single 
method. While complete sets of parameters are not transferable between dif-
ferent systems of equations, there are useful results that may be transferred. 
For instance, if the topology of the network is unknown, then one task of the 
reverse-engineering process involves predicting which genes are not interact-
ing with each other, which is modeled by putting the weights wi,j to zero in the 
ANN method, or the exponents ni,j to zero in the GRLOT method. Results 
such as these are easily transferable between the mathematical methods.



REfERENCES    161

Even for very small gene networks, considerable amounts of highly time-
resolved data, with many sampling points based on multiple perturbations and 
experimental conditions, may be necessary to produce reliable dynamic GRN 
models. Our studies suggest that mathematical methods used to model GRNs 
are not equivalent, and because of considerable differences in the way the 
methods process inputs, the models they create may vary considerably in terms 
of accuracy. Furthermore, as the complexity in terms of the number of genes 
and regulatory interactions increases, the computational complexity and com-
puting power required to reverse engineer dynamic GRN models becomes 
nontrivial, requiring nonstandard computing solutions such as clusters, super-
computers, or other large-scale computing solutions. QCG-OMPI and the 
software discussed in this chapter are an attractive solution to meet these 
challenges.

ACKNOWLEDGMENTS

The work reported in this chapter was supported by EC grants DataMiningGrid 
IST FP6 004475, QCG IST FP6 STREP 033883, and ICT FP7 MAPPER RI-
261507. Some of the presented experiments were carried out using the 
Grid’5000 experimental test bed, being developed under the INRIA ALADDIN 
development action with support from the Centre National de la Recherche 
Scientifique (CNRS), Reseau National de Télécommunication pour la Techno-
logie, l’Enseignement et la Recherche (RENATER), and several universities 
as well as other funding bodies (see https://www.grid5000.fr).

REFERENCES

J. S. Almeida and E. O. Voit. Neural-network-based parameter estimation in S-system 
models of biological networks. Genome Informatics, 14:114–123, 2003.

T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, 
Evolutionary Programming, Genetic Algorithms. Oxford, UK: Oxford University 
Press, 1996.

P. Bar, C. Coti, D. Groen, et al. Running parallel applications with topology-aware grid 
middleware. In Fifth IEEE Int’l Conference on eScience, Oxford, UK, December 
9–11, 2009, pp. 292–299, 2010.

I. Cantone, L. Marucci, F. Iorio, et al. A yeast synthetic network for in vivo assessment 
of reverse-engineering and modeling approaches. Cell, 137(1):172–181, 2009.

F. Cappello, E. Caron, M. Dayde, et al. Grid’5000: A large scale and highly reconfigu-
rable grid experimental testbed. In Proc. of the 6th IEEE/ACM Int’l Workshop on 
Grid Computing (SC’05), pp. 99–106, Seattle, WA: IEEE/ACM, 2005.

C. Coti, T. Herault, S. Peyronnet, et al. Grid services for MPI. In 8th Int’l Symposium 
on Cluster Computing and the Grid (CCGRID’08), pp. 417–424, Washington, DC: 
IEEE Computer Society, 2008.

http://https://www.grid5000.fr


162    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

E. J. Crampin, S. Schnell, and P. E. McSharry. Mathematical and computational tech-
niques to deduce complex biochemical reaction mechanisms. Progress in Biophysics 
and Molecular Biology, 86(1):77–112, 2004.

E. Davidson and M. Levin. Gene regulatory networks. Proceedings of the National 
Academy of Sciences of the United States of America, 102(14):4935–4935, 2005.

E. Gabriel, G. E. Fagg, G. Bosilca, et al. Open MPI: Goals, concept, and design of a next 
generation MPI implementation. In Proc. of the 11th European PVM/MPI Users’ 
Group Meeting, pp. 97–104, Budapest, Hungary, September 2004.

M. Gorges-Schleuter. Asparagos an asynchronous parallel genetic optimization strat-
egy. In Proc. of the 3rd Int’l Conference on Genetic Algorithms, pp. 422–427, San 
Francisco, CA: Morgan Kaufmann Publishers Inc., 1989.

J. Hasty, D. McMillen, F. Isaacs, et al. Computational studies of gene regulatory net-
works: In numero molecular biology. Nature Reviews Genetics, 2(4):268–279, 2001.

W. S. Hlavacek and M. A. Savageau. Rules for coupled expression of regulator and 
effector genes in inducible circuits. Journal of Molecular Biology, 255(1):121–139, 
1996.

J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis 
with Applications to Biology, Control and Artificial Intelligence. Cambridge, MA: 
MIT Press, 1992.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proc. of the IEEE Int’l 
Conference on Neural Networks. IV, pp. 1942–1948, 1995.

K. Kurowski, W. Back, W. Dubitzky, et al. Complex system simulations with QosCosGrid. 
In K. Kurowski et al., editors, ICCS ’09: Proc. of the 9th Int’l Conference on 
Computational Science, pp. 387–396, Berlin: Springer-Verlag, 2009.

P. Mendes, W. Sha, and K. Ye. Artificial gene networks for objective comparison of 
analysis algorithms. Bioinformatics, 19(90002):122–129, 2003.

M. A. Savageau. Biochemical Systems Analysis: A Study of Function and Design in 
Molecular Biology. Reading, MA: Addison-Wesley, 1976.

M. T. Swain, J. J. Mandel, and W. Dubitzky. Comparative study of three commonly used 
continuous deterministic methods for modeling gene regulation networks. BMC 
Bioinformatics, 11(459):1471–2105, 2010.

J. Vohradsky. Neural network model of gene expression. The FASEB Journal: Official 
Publication of the Federation of American Societies for Experimental Biology, 
15(3):846–854, 2001.

L. Wessels, E. van Someren, and M. Reinders. A comparison of genetic network models. 
In Proc. of the Pacific Symposium on Biocomputing, pp. 508–519, 2001.

J. Wildenhain and E. J. Crampin. Reconstructing gene regulatory networks: From 
random to scale-free connectivity. IEE Proceedings of Systems Biology, 156(4):247–
256, 2006.



Chapter 9
QosCosGrid e-Science 

Infrastructure for  
Large-Scale Complex 

System Simulations
Krzysztof Kurowski, Bartosz Bosak, Piotr Grabowski,  

Mariusz Mamonski, and Tomasz Piontek
Poznan Supercomputing and Networking Center, Poznan, Poland

National Institute for Research in Computer Science and Control  
(INRIA), Rennes, France

163

George Kampis

László Gulyás

Camille Coti 

Thomas Herault and Franck Cappello

Collegium Budapest (Institute for Advanced Study), Budapest, Hungary

Aitia International Inc. and Collegium Budapest  
(Institute for Advanced Study), Budapest, Hungary

9.1  INTRODUCTION

Grids and clouds could be viewed as large-scale computing systems with con-
siderable levels of hardware resources but lacking many of the the features 
that make supercomputers so powerful. In particular, grids and clouds usually 

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski, 
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

LIPN, CNRS-UMR7030, Université Paris 13, Villetaneuse, France



164    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

do not provide sophisticated support for parallel and multiphysics applications 
with significant interprocess communication requirements. Connected via 
local and wide area networks, such big computing infrastructures typically rely 
on an opportunistic marshalling of resources into coordinated action to meet 
the needs of large-scale computing applications. Both grids and clouds are 
often presented as a panacea for all kinds of computing applications, including 
those that require supercomputing-like environments. However, this vision of 
grids or clouds as virtual supercomputers is unattainable without overcoming 
their performance, coallocation, and reliability issues. The demanding nature 
of scientific simulations requires a new e-infrastructure that is able to simul-
taneously manage heterogeneous resources, such as computing resources, 
storage, and networks to guarantee the level of quality of service demanded 
by end users and their applications, especially a large number of legacy appli-
cations designed to run in parallel. To meet the requirements of large-scale 
complex simulations, we have built a system capable of bringing supercomputer-
like performance to advanced applications, including sophisticated parameter 
sweep experiments, workflow-intensive applications, and cross-cluster parallel 
computations. Our system (called QosCosGrid [QCG]) consists of a collection 
of middleware services and external application tools and was first introduced 
by Kurowski et al. (2009). QCG is designed as a multilayered architecture that 
is capable of dealing with computationally intensive large-scale, complex, and 
parallel simulations that are usually too complex to run within a single com-
puter cluster or machine. The QCG middleware enables computing resources 
(at the level of processor cores) from different administrative domains (ADs) 
to be combined into a single powerful computing resource via the Internet. 
Clearly, bandwidth and latency characteristics of the Internet may have an 
effect on overall application performance of QCG-enabled applications. 
However, the ability to connect and efficiently control advanced applications 
executed in parallel over the Internet is a feature that is highly appreciated 
by QCG users.

QCG could be viewed as a quasi-opportunistic supercomputer whose com-
putational performance exceeds the power offered by a single supercomputing 
or data center (Kurowski et al., 2010). Nowadays, it is more common for 
complex system simulations to rely on supercomputers because of the high 
data volume and computing requirements of the individual computations, but 
also because of the high communication overhead between the computation 
tasks on individual elements. However, dedicated supercomputers for such 
calculations are expensive to acquire and maintain. As a consequence, many 
organizations do not have access to supercomputing facilities and rely local 
computing resources. Recently, local computing clusters and other multicore 
and multimachine systems have become the technology of choice for many 
complex system modelers. However, with the advent of flexible modeling tools, 
complex system simulations have become even more difficult to manage. As 
a result, local clusters are increasingly inadequate to satisfy the required com-
puting and communication needs. QCG aims to address this gap by facilitating 
supercomputer-like performance and structure through efficient cross-cluster 



DIsTRIbUTED AND PARALLEL sIMULATIONs    165

computations. Thus, new middleware services and application tools for end 
users were developed and integrated to narrow the gap and to realize large-
scale parallel and distributed computing e-infrastructures. The QCG imple-
mentation comprises a comprehensive framework for metascheduling and 
managing topology-aware complex system applications. This framework 
includes pluggable components that carry out the usual scheduling operations, 
including the assignment of parallel processes on a time axis, clustering of 
resources, and matching application requests1 and available resources across 
geographic dispersed locations. The QCG framework is highly flexible as it is 
composed of pluggable components that can be easily modified to support 
different scheduling and access policies to better maximize a diversity of utility 
functions. Furthermore, the framework exploits novel algorithms for topology-
aware coallocations that are required by parallel programming and execution 
setups in production-level high-performance computing (HPC) environments, 
such as the Message Passing Interface (MPIs), ProActive, or their hybrid 
extensions linking programming models like OpenMP or CUDA.

This chapter focuses on two enhanced and widely used parallel computing 
environments: QosCosGrid-ProActive (QCG-ProActive) and QosCosGrid-
OpenMPI (QCG-OMPI). QCG-OMPI2 is designed to enable parallel applica-
tions to run across geographically widely distributed computational resources 
owned and secured by different administrative organizations (Agullo et al., 
2011). QCG-ProActive was successfully integrated with the Repast Suite, a very 
popular Java-based, agent-based modeling and simulation platform (Gulyás et 
al., 2008). A new version of the C++ implementation of Repast for supercom-
puting environments (called Repast HPC3) will be supported by QCG.

The remainder of this chapter is organized as follows. Section 9.2 presents 
a short overview of validation scenarios; it also discusses the main require-
ments of complex systems and other demanding parallel applications and 
classifies these into “templates.” Section 9.2 gives a technical overview of 
QCG-ProActive and QCG-OMPI. In Section 9.4, we introduce the QCG 
middleware services and their key capabilities relevant to end users. A number 
of useful libraries and frameworks for application developers and resource 
providers using QCG are described in Section 9.5. Section 9.6 presents addi-
tional Web-based monitoring and troubleshooting tools for QCG, which are 
already available on some production-level computational clusters and super-
computers. Finally, Section 9.7 concludes this chapter and discusses future 
development plans.

9.2  DISTRIBUTED AND PARALLEL SIMULATIONS

In this section, we briefly introduce the main requirements of a variety of 
complex system applications. To classify frequently occurring application  

3 Chapter 5 presents an overview of the Repast HPC framework and its implementation.

2 More details on the QCG-OMPI middleware are presented in Chapter 8 of this volume.

1 We have categorized these into six generic templates; see Section 9.2.



166    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

patterns into communication templates, Gulyás et al. (2008) studied the inter-
action topologies of a wide range of complex system simulations. The proposed 
communication templates were used to inform the design and implementation 
of the QCG middleware. The QCG middleware controls a hierarchical struc-
ture of scheduler and map application requests to distributed computational 
resources and networks to enable efficient processing. Each template may be 
accompanied by one or more template implementations and parameters that 
determine how the information in the templates is to be used by the QCG 
middleware. This feature is specifically designed to meet the needs of complex 
system modelers. The modelers take advantage of this by identifying the com-
munication class their models belong to and then populate the templates with 
the details of their specific simulation models and tasks. While this approach 
may not achieve the most efficient distributed implementation, it is likely to 
reduce the implementation effort that would otherwise be required to realize 
many simulations.

Two special application patterns may be distinguished. In the first, the 
dependencies among components do not follow a predetermined structure 
(i.e., they form a uniform random distribution) and change regularly over time 
(e.g., dependencies are resampled prior to each update). The second special 
case is when no communication occurs among complex system components.

One might argue that these are overly simplified examples and that a col-
lection of components (as in the second example) may not qualify as a system 
at all. However, we believe this is merely a question of the level of abstraction 
adopted. In the first scenario, which is not as uncommon as it may seem, a 
distributed parameter space search is arguably the most adequate implemen-
tation strategy, which is just an example of our second scenario: the individual 
simulation runs can be viewed as noninteracting components. On the other 
hand, more sophisticated parameter space search methods introduce depen-
dencies among individual runs by determining which parameter combination 
to explore next on the basis of the results computed previously (i.e., sampling 
in more “turbulent” parameter regions). In this case, a parameter space search 
becomes a nontrivial complex system again, worthy of dependency analysis in 
its own right. Dealing with more complex cases, our first observation is that 
static communication patterns allow for the direct application of distribution 
algorithms. Therefore, we handle these cases separately from the dynamic 
topologies. Next, we point out that the dependencies of the update functions 
may be dependent on the components’ states. In many cases, it is possible to 
project the components’ state information to a metric space and update depen-
dencies based on distance in this space. For example, if components are agents 
moving in a space (in computational models often realized as a two-dimensional 
lattice), then each agent state will (among other things) include the coordi-
nates of the agent. If in the model the agents interact only with the agents in 
their vicinity, then the update dependencies of the components are distance 
dependent. This spatial property of a complex system simulation, if present, 
may be successfully exploited in determining the partitions of a distributed 





168    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

Template 1 (T1) (static networks) describes a nonspatial system with a static 
communication pattern. It is assumed that the exact communication pattern 
can be extracted from the system, or that it is defined explicitly. To the thus 
defined communication graph, a variety of graph partitioning algorithms can 
be applied, in particular, approaches proposed by Fjallstrom (1998).

Template 2 (T2) (dynamic networks) introduces dynamism into Template 
1. The assumption about the existence of a communication graph is main-
tained, but, in contrast to Template 5, it is assumed that the changes and their 
frequency are defined by a graph transition function that provides enough 
information to predict in advance communication requirements among dis-
tributed components. (Sometimes, it may be sufficient to know that the level 
of change in the communication graph is low, such that it is sufficient to repar-
tition nodes at regular intervals, at every 10,000 time steps, for instance.) The 
implementation approach we propose for such systems is the regular applica-
tion of classic graph repartitioning algorithms, that is, graph partitioning algo-
rithms that attempt to improve on an existing partition (Barnard, 1995).

Template 3 (T3) (static spatial systems) moves away from Template 1 along 
the other axis. It maintains the assumption about a static communication 
pattern but requires the spatial property. Prime examples of such systems are 
cellular automata. Template 3 is the pattern that is geared toward a distributed 
implementation; such implementations may be based on methods and algo-
rithms developed for distributed cellular automata (Mazzariol et al., 2000).

Finally, Template 4 (T4) (dynamic spatial systems) assumes a spatial system 
in which the communication pattern evolves over time. One example of such 
a system is the case discussed earlier in which agents move in space and com-
municate with other agents in their immediate vicinity. To realize distribution 
computing strategies for complex systems belonging to this template, we point 
to algorithms specially developed for such systems using buffering and mes-
saging solutions and ways of predicting the speed of spatial movement (Scheutz 
and Schermerhorn, 2006). It is worth pointing out that the fundamental 
assumption of this template and thus a key to the successful implementation 
of these solutions is that changes in spatial positions are slow relative to the 
frequency of state updates.

9.3  PROGRAMMING AND EXECUTION ENVIRONMENTS

The main goal in the development of the QCG middleware was to provide a 
flexible, efficient, and secure distributed computing system that is able to deal 
with large-scale simulations over distributed computing resources connected 
via local and wide area networks (in particular via Internet connections). To 
inform the development of the QCG middleware and to facilitate its testing 
and validation, a number of concrete resource-demanding complex system 
simulations have been identified and classified into communication templates 
(Section 9.2). The initial set of use cases included the living simulation, evolu-



PROGRAMMING AND ExECUTION ENVIRONMENTs    169

tionary computation, and agent-based modeling. Recently, we added new 
requirements arising from various multiscale and multiphysics use cases to be 
support by QCG, for example, the multiscale modeling in computational bio-
medicine (Sloot and Hoekstra, 2010).

From a development perspective, the applications were grouped into two 
classes: (1) Java applications taking advantage of the ProActive library as the 
parallelization technology and (2) applications based on ANSI C or similar 
codes, which rely on the message passing paradigm. Based on these groups, 
QCG was designed to support two parallel programming and execution envi-
ronments, namely, QCG-OpenMPI (aiming at C/C++ and Fortran parallel 
applications developers) and QCG-ProActive (aiming at Java parallel applica-
tion developers).

In this section, we briefly describe those two programming and execution 
environments together with a number of useful features that make them easy 
to use and powerful for end users concerned with large-scale parallel simula-
tions of complex systems. All the presented technologies and integration 
efforts described in the next two subsections were needed to faciliate cross-
cluster execution of advanced applications in firewall-protected and Network 
Address Translation (NAT) environments. Next, we also present our new 
approach to a common problem in many grids and clouds regarding the simul-
taneous access and synchronization of a large number of computational 
resources. We also provide an overview of the innovative cross-cluster deploy-
ment protocol developed within QCG, which is designed to simplify the man-
agement of complex parallel processes that are organized in groups and 
hierarchies. Even though the QCG-managed cross-cluster parallel executions 
are limited to the two enhanced parallel environments, other advanced man-
agement capabilities for applications are supported as well, including support 
for workflows or parameter sweep jobs.

9.3.1  QCG-OMPI

MPI is a de facto a standard in the domain of parallel applications. MPI pro-
vides end users with both the programming interface consisting of simple 
communication primitives and the environment for spawning and monitoring 
MPI processes. A variety of implementations of the MPI standard are avail-
able (both as commercial and open source). QCG uses the OpenMPI imple-
mentation of the MPI 2.0 standard. Of key importance are the intercluster 
communication techniques that deal with firewalls and NAT. In addition, the 
mechanism for spawning new processes in OpenMPI is integrated in the QCG 
middleware. The extended version of the OpenMPI framework is referred to 
as QCG-OMPI (Coti et al., 2008). The QCG-OMPI is as follows:

1. Internally, QCG-OMPI improves the MPI library through a variety of 
connectivity techniques to enable direct connections between MPI ranks 
that are located in remote clusters, potentially separated by firewalls.



170    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

2. Mechanisms going beyond the MPI standard were realized to accom-
modate QCG’s semiopportunistic approach; this was achieved by a new 
interface to describe the actual topology provided by the Metascheduler.

3. MPI collective operations were upgraded to be hierarchy aware and 
were optimized for the grid.

We briefly present in this section each of these extensions and some results 
that demonstrate the performance achievable with QCG-OMPI.

Agullo et al. (2010) present two MPI applications that have been ported to 
the QCG approach using QCG-OMPI. The first is a simple ray tracing applica-
tion (Ray2mesh) based on a hierarchical master–worker scheme. Results from 
performance tests are depicted in Figure 9.2 and are contrasted with the per-
formance of non-QCG implementations of this application. Using grid-aware 
collective operations is a simple approach for porting an application to the 
grid. Ray2mesh uses collective operations to communicate parameters and 
collect partial results from the computing nodes. Figure 9.2 illustrates that the 
performance obtained through Ray2mesh using grid-optimized collectives 
(gray bars) is consistently outperforming the Vanilla implementation; the per-
formance gain increases as the number of processes increase (20% with 120 
processes).

Another key element of porting an application to the grid requires the 
adaptation of communication and computation patterns that fit the underlying 
topology (black bars). The performance improvement at a larger number of 
nodes or processors is outperforming topology-aware collective communica-

Figure 9.2  QosCosGrid-OpenMPI (QCG-OMPI) performance on test-bed resources.

40

60

80

100

120

140

160

15 30 45 60 90 120

P
er

ce
nt

ag
e 

of
 A

cc
el

er
at

io
n 

w
.r

.t.
 V

an
ill

a 
R

ay
2m

es
h

# of nodes

Execution Time of Ray2mesh on a Grid

Grid-Optimized Collectives
Topology Aware

Vanilla



PROGRAMMING AND ExECUTION ENVIRONMENTs    171

tions (55% with 120 processes). We can see that small-scale executions show 
lower performance than the Vanilla implementation. The reason for this is that 
for a given number of processes, the grid-enabled implementation dedicates 
more processes to control and scheduling (i.e., master processes) than the 
Vanilla implementation. As a consequence, fewer processes are available for 
computation (i.e., worker processes). However, it would be possible to run 
worker processes on the same nodes as master processes since the latter are 
carrying out input/output (I/O) operations, whereas the former is running 
CPU-intensive operations.

The port range technique establishes a direct connection between processes 
that communicate with each other (Agullo et al., 2010). As a consequence, this 
approach has no overhead on the performance of the communication library: 
The bandwidth and the latency of the communications are the same as the 
those obtained by the Vanilla communication libraries.

Interconnecting processes through a proxy does not enable a direct con-
nection between them. It introduces an extra “hop” between the two processes; 
hence, the process–process latency is the result of adding the two process–
proxy latencies (Agullo et al., 2010). As a consequence, the physical location 
of the proxy with respect to the processes is of major importance in order to 
minimize this additional overhead. Besides, the proxy’s bandwidth is shared 
between all the processes that are using it. If several processes are communi-
cating at the same time through a given proxy, the available bandwidth for 
each process will be divided between them. Finally, performance evaluations 
have been conducted on “raw communications,” and the impact of the perfor-
mance obtained by these techniques on benchmark applications has been 
compared by Coti et al. (2008).

More comprehensive studies of QCG-OMPI and another grid-enabled 
application are presented by Agullo et al. (2010). A linear algebra factorization 
has been adapted to the grid using a communication-avoiding algorithm with 
grid-aware domain decomposition and a reduction algorithm that confines  
the communications within sets of processes that match the underlying physi-
cal topology. The performance of this application shows good scalability on 
the grid. Chapter 8 of this volume presents a topology-aware evolutionary 
algorithm and its application to gene regulatory network modeling and 
simulation.

9.3.2  QCG-ProActive

The vast number of Java-based legacy applications in use prompted develop-
ments attempting to provide a similar functionality for parallel Java applica-
tions as MPI offers to C/C++ or Fortran parallel code. Instead of exploiting 
existing Java bridges to MPI implementations, we decided to use the ProActive 
Parallel suite (Baduel et al., 2006). The library uses the standard Java RMI 
framework as a portable communication layer. With a reduced set of simple 
primitives, ProActive (version 3.9 as used in QCG) provides a comprehensive 



172    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

toolkit that simplifies the programming of applications distributed on local 
area networks, clusters, Internet grids, and peer-to-peer intranets for Java-
based applications. However, when we designed QCG, the standard ProActive 
framework did not provide any support for multiuser environments, advance 
reservation, and cross-cluster coallocation. To meet the requirements of 
complex system simulation applications and users, we developed extensions 
to the ProActive library (called QCG-ProActive) with the following goals:

• To preserve standard ProActive library properties (i.e., allow legacy 
ProActive applications to be seamlessly ported to QCG)

• To provide end users with a consistent QCG-Broker (see further) Job 
Profile schema as a single document for describing application parameters 
required for execution as well as resource requirements (in particular, 
network topology and estimated execution time)

• To prevent end users from the necessity to have direct (i.e., over Secure 
Shell [SSH]) access to remote clusters and machines

9.3.2.1  Cross-Cluster  Deployment  and  Communication  In the QCG 
environment, additional services were required in order to support the spawn-
ing of parallel application processes on coallocated computational resources. 
The main reason for this was that standard deployment methodologies used 
in OpenMPI and ProActive relied on either RSH/SSH or specific local queuing 
functionalities. Both are limited to single-cluster runs (e.g., the SSH-based 
deployment methods are problematic if at least one cluster has worker nodes 
that have private IP addresses). Those services are called the coordinators and 
are implemented as Web services. Taking into account different existing cluster 
configurations, we may distinguish the following general situations:

1. A Computing Cluster with Public IP Addresses. Both the front end and 
the worker nodes have public IP addresses. Typically, a firewall is used 
to restrict access to internal nodes.

2. A Computing Cluster with Private IP Addresses. Only the front-end 
machine is accessible from the Internet; all the worker nodes have private 
IP addresses. Typically, NAT is used to provide outbound connectivity.

These cluster configuration types influence intercluster communication 
techniques supported in QCG, called port range and proxy respectively.

9.3.2.2  Port  Range  Technique  The port range technique is a simple 
approach that makes the deployment of parallel environments firewall friendly. 
Most of the existing parallel environments use random ports by default to 
listen for incoming TCP/IP traffic. This makes cross-domain application execu-
tion almost impossible as most system administrators typically forbid to open 
all inbound ports to the Internet due to security reasons. By forcing the parallel 







QCG MIDDLEWARE    175

ADs. The AD represents a single resource provider (e.g., HPC or data center) 
participating in a certain grid or cloud environment by sharing its computa-
tional resources with both local and external end users. The logical separation 
of ADs corresponds to the fact that they are owned by different institutions 
or resource providers. Each institution contributes its resources for the benefit 
of the entire grid or cloud while controlling its own AD and own resource 
allocation/sharing policies. All involved organizations agree to connect their 
resource pools exposed by AD-level services to a trusted upper-level middle-
ware, in this case, QCG middleware. Based on these assumptions, QCG mid-
dleware tries to achieve optimal resource utilization and to ensure the 
requested level of quality of service for all the end users. The key component 
of every AD in QCG is the QCG-Computing service, which provides remote 
access to queuing system resources. The QCG-Computing service supports 
advance reservation, parallel execution environments—OpenMPI and 
ProActive, with coordinators being responsible for the synchronization of 
cross-cluster executions—and data transfer services for managing input and 
output data. Another relevant service at the AD level is in charge of notifica-
tion mechanisms: It is called QCG-Notification. All AD-level services are 
tightly integrated and connected to the grid-level services in QCG. There  
are two critical services at the grid-level: the QCG-Broker, which is a metas-
cheduling framework controlling executions of applications on the top of 
queuing systems via QCG-Computing services, and the Grid Authorization 
Service (GAS), which offers dynamic, fine-grained access control and enforce-
ment for shared computing services and resources. From an architectural 
perspective, GAS can also be treated as a trusted single logical point for defin-
ing security policies. The overall QCG architecture is depicted in Figure 9.5.

9.4.1  QCG-Computing Service

QCG-Computing (the successor of the SMOA Computing and OpenDSP 
projects) is an open architecture implementation of the SOAP Web service 
for multiuser access and policy-based job control routines by various queuing 
and batch systems managing local computational resources. This key service 
is using Distributed Resource Management Application API (DRMAA) to 
communicate with the underlying queuing systems (Troger et al., 2007). QCG-
Computing has been designed to support a variety of plug-ins and modules 
for external communication as well as to handle a large number of concurrent 
requests from external clients and services, in particular, QCG-Broker and 
GAS. Consequently, it can be used and integrated with various authentication, 
authorization, and accounting services or to extend capabilities of existing 
e-infrastructures based on UNICORE, gLite, Globus Toolkit, and others. 
QCG-Computing service is compliant with the Open Grid Forum (OGF) HPC 
Basic Profile specification, which serves as a profile over OGF standards like 
Job Submission Description Language (JSDL) and Open Grid Services 
Architecture (OGSA) Basic Execution Service (OGF, 2007). In addition, it 



176    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

offers remote interfaces for advance reservation management and supports 
basic file transfer mechanisms. QCG-Computing was successfully tested with 
the following queuing systems: Sun Grid Engine (SGE), Platform LSF, Torque/
Maui, PBS Pro, Condor, and Apple XGrid. Therefore, as a crucial component 
in QCG, it can be easily set up on the majority of computing clusters and 
supercomputers running the aforementioned queuing systems. Currently, 
advance reservation capabilities in QCG-Computing are exposed for SGE, 
Platform LSF, and Maui (a scheduler that is typically used in conjunction with 
Torque). Moreover, generic extensions for advance reservation have been 
proposed for the next DRMAA standard release.

9.4.2  QCG-Notification and Data Movement Services

QCG-Notification (the successor of SMOA Notification) is an open source 
implementation of the family of WS-Notification standards (version 1.3) 
(OASIS Standards, 2008). In the context of QCG, it is used to extend features 
provided by QCG-Computing by adding standards-based synchronous and 
asynchronous notification features. QCG-Notification supports the topic-based 
publish/subscribe pattern for asynchronous message exchange among Web 
services and other entities, in particular, services or clients that want to be inte-
grated with QCG. The main part of QCG-Notification is based on a highly 
efficient, extended version of the Notification Broker, managing all items par-
ticipating in notification events. Today, QCG-Notification offers sophisticated 
notification capabilities, for example, topic and message content notification 

Figure 9.5  The overall QosCosGrid architecture and its main services supporting QCG-OMPI 
and QCG-ProActive.



QCG MIDDLEWARE    177

filtering and pull-and-push styles of transporting messages. QCG-Notification 
has been integrated with a number of communication protocols as well as 
various Web service security mechanisms. The modular architecture of QCG-
Notification makes it relatively straightforward to develop new extensions and 
plug-ins to meet new requirements. In QCG, for example, it was used for bro-
kering notification messages about the job state changes linking QCG-Broker 
and QCG-Computing. All instances of the QCG-Computing service act as 
information producers, while the QCG-Broker service is the consumer of job 
notifications in QCG. More sophisticated configurations of QCG-Notification 
with both QCG middleware services and external entities based on service-
oriented architecture patterns are also possible. Table 9.1 presents the result of 
a functional comparison between QCG-Notification and other popular notifi-
cation frameworks, namely, Apache ServiceMix (version 3.3.1), IBM WebSphere 
(version 7.0) and Globus Toolkit (version 4.2). A set of analyzed functional 
features covers most of the WS-Notification concepts, and it allows us to high-
light fundamental differences among existing standards-compliant notification 
systems.

As many other e-infrastructures controlled by middleware services, QCG 
takes advantage of the GridFTP protocol for large data transfer operations, in 
particular, to stage in and stage out files for advanced simulations. GridFTP is 
a high-performance, secure, reliable data transfer protocol optimized for high-
bandwidth wide area networks. It is a de facto standard for all data transfers 
in grid and cloud environments and extends the standard FTP protocol with 
functions such as third-party transfer, parallel and striped data transfer, self-
tuning capabilities, X509 proxy certificate-based security, and support for reli-
able and restartable data transfers. The development of GridFTP is coordinated 
by the GridFTP Working Group under the hood of the OGF community.

9.4.3  QCG-Broker Service

QCG-Broker (formerly named GRMS) was designed to be an open source 
metascheduling framework that allows developers to build and easily deploy 

TABLE 9.1  Functional Comparison of Leading Notification Frameworks

QCG-Notification ServiceMix WebSphere GT 4.x

Language Ansi C Java Java C/Java
Type Brokered Brokered Brokered Base
Topic namespaces Yes No Yes Yes (flat only)
Dialect Full Simple Full Simple
Dynamic topics Yes*) Yes Yes Yes
Message filters Yes Yes Yes No
Pull points Yes Yes Yes No
Core functions QCG-Core,  

XMPP
JBI services
Bus JMS
JMS

Enterprise
Service bus

Java WS-Core
C WS-Core



178    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

resource management systems to control large-scale distributed computing 
infrastructures running queuing or batch systems locally. Based on dynamic 
resource selection, advance reservation and various scheduling methodologies, 
combined with feedback control architecture, QCG-Broker deals efficiently 
with various metascheduling challenges, for example, coallocation, load bal-
ancing among clusters, remote job control, file staging support, or job migra-
tion (Kurowski et al., 2004). The main goal of QCG-Broker was to manage 
the whole process of remote job submission and advance reservation to various 
batch queuing systems and subsequently to underlying clusters and computa-
tional resources. It has been designed as an independent core component for 
resource management processes that can take advantage of various low-level 
core and grid services and existing technologies, such as QCG-Computing, 
QCG-Notification, or GAS, as well as various grid middleware services such 
as gLite, Globus, or UNICORE. Addressing various demanding computa-
tional needs of large-scale complex simulations, which in many cases can 
exceed capabilities of a single cluster, the QCG-Broker can flexibly distribute 
and control applications onto many computing clusters or supercomputers on 
behalf of end users. Moreover, owing to some built-in metascheduling proce-
dures, it can optimize and run efficiently a wide range of applications while at 
the same time increasing the overall throughput of computing e-infrastructures. 
Advance reservation mechanisms are used to create, synchronize, and simul-
taneously manage the coallocation of computing resources located at different 
ADs. The XML-based job definition language Job Profile makes it relatively 
easy to specify the requirements of large-scale parallel applications together 
with the complex parallel communication topologies. Consequently, applica-
tion developers and end users are able to run their experiments in parallel 
over multiple clusters.

Defined communication topologies may contain definitions of groups of 
MPI or ProActive processes with resource requirements, using resource and 
network attributes for internal and external group-to-group communication. 
Therefore, various application-specific topologies such as master–slave, all-to-
all, or ring are supported in the Job Profile language. The Job Profile language 
has been adopted for complex system modeling and simulation purposes else-
where (see, e.g., Chapter 8 of this volume or the work reported by Agullo  
et al., 2010).

To meet the requirements of complex scenarios consisting of many coop-
erating and possibly concurrent applications, for example, exchanging steering 
parameters in multiscale simulation studies, QCG-Broker is able to deal  
with complex applications defined as a set of tasks with precedence relation-
ships (workflows). The workflow model built into QCG-Broker is based  
on direct acyclic graphs. In this approach, an end user specifies in advance 
precedence constraints of a task in the form of task–state relationships. 
What differentiates QCG-Broker from other middleware services supporting 
workflows is that every single task can be connected not only with input  



ADDITIONAL QCG TOOLs    179

TABLE 9.2  Comparison of QCG-Broker with Other Leading Brokering and Scheduling 
Services

Feature/System QCG-Broker Moab Grid Suites CSF4 GUR HARC

Negotiation 
protocol

Enhancement 
1-phase 
commit

— None Reserve 
Cancel

Paxos

Economic support Yes No No No No
Coallocation Yes Yes No Yes Yes
Topology-aware 

coallocation
Yes No No No No

Scheduling on time 
axis

Yes Yes No No No

Local schedulers 
support

LSF Torque
PBSPro SGE
SLURM 

OpenPBS

Torque PBSPro
LSF SGE SLURM
OpenPBS 

LoadLeveler

LSF PBS
Condor
SGE

Catalina LoadLeveler
PBSPro LSF
Torque

DRMAA support Yes Yes No No No
Open source code Yes No Apache GPL OpenSource
OpenDSP support Yes No No No No

or output files but may also be triggered by predefined conditional rules or by 
the status of one or more jobs or tasks. Additionally, QCG-Broker supports 
parameter sweeps and allows to start in a single call multiple instances of  
the same application with different sets of arguments. For each task in the 
collection, the value of one or more of the task parameters may be changed 
in some predefined fashion, thus creating a parameter space. This is a very 
useful feature and gives the end user an easy way to search the parameter 
space for the concrete set of parameters that meet the defined criteria.  
QCG-Broker is a unique feature to allow end users to define multidi-
mensional parameter spaces. Moreover, QCG-Broker has been success-
fully integrated with the Grid Scheduling SIMulator (GSSIM) to perform 
advanced metascheduling optimization, tuning, or reconfiguration experi-
ments (Kurowski et al., 2007). Table 9.2 depicts the main features of QCG-
Broker and compares these to other metascheduling frameworks deployed in 
e-infrastructures.

9.5  ADDITIONAL QCG TOOLS

9.5.1  Eclipse Parallel Tools Platform (PTP) for QCG

The PTP is intended to address a major deficiency in the development  
of parallel programs, namely, the lack of a robust open source targeted  



180    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

development environment with tools that assist in software development for 
parallel applications. The PTP offers a variety of useful features for parallel 
application developers, in particular, a parallel integrated development envi-
ronment, a scalable debugger, integration with parallel tools, and interaction 
with parallel systems. Currently, the main supported languages are C/C++ and 
Fortran. We used the Eclipse PTP framework to support QCG-OMPI and 
remote job submission, debugging, and monitoring using the QCG middle-
ware, in particular, QCG-Computing services.

In order to connect to QCG-Computing services, it is necessary to provide 
connection data. These are inserted by the user via a graphical user interface 
(GUI) wizard page from the QCG RM plug-in. As the wizard is accepted, the 
data reach an object from class QCGServiceProvider responsible for 
keeping the data persistent. When the Eclipse PTP requests a connection 
name for the first time (which it is going to use for the connection), a new 
instance from the QCGConnection class is created and registered at 
QCGConnectionManager. This object contains the Web service ports for 
rsync, staging and activity management. Once the user requests to start the 
Resource Manager, classes QCGResourceManager and QCGRuntimeSystem 
are created and certain methods are called. These classes obtain basic data 
about the system (by calling getFactoryAttributes()) and display them 
in Eclipse’s parallel run-time perspective. A generic architecture of a new 
Eclipse PTP plug-in available for QCG users and developers is depicted in 
Figure 9.6.

9.6  QOSCOSGRID SCIENCE GATEWAYS

The advanced Web-based graph- and multimedia-oriented user interfaces 
designed for scientists and engineers could change the way end users collabo-
rate, deal with advanced simulations, share results, and work together to solve 
challenging problems. Moreover, future science and engineering gateways will 
influence the way end users will access not only their data but also control and 
monitor demanding computing simulations over the Internet. To allow end 
users to interact remotely with future supercomputers and large-scale comput-

Figure 9.6  Eclipse PTP plug-in for parallel application development and debugging integrated 
with QosCosGrid.



QOsCOsGRID sCIENCE GATEWAYs    181

ing environments in a more visual manner, we developed a Web tool called 
Vine Toolkit. Russell et al. (2008) demonstrated that this tool can be used as 
a core Web platform for various science gateways integrated with various 
e-infrastructures based on UNICORE, gLite, or Globus Toolkit middleware 
services. The Vine Toolkit is a modular, extensible, and easy-to-use tool as well 
as a high-level application program interface for various applications, visual-
ization components, and building blocks to allow interoperability between a 
wide range of grid and supercomputing technologies. Similar to stand-alone 
GUIs, it supports Adobe Flex and BlazeDS technologies, allowing the creation 
of advanced Web applications. Additionally, the Vine Toolkit has been inte-
grated with well-known open source Web frameworks, such as Liferay and 
GridSphere. Using the enhanced version of Vine Toolkit, we created a new 
Science Gateway called QCG Gateway. The QosCosGrid Science Gateway 
consists of a general part showing and monitoring computational resource 
characteristics as well as a set of domain-specific Web applications developed 
for certain complex system use cases. With these tools, end users are able to 
use only Web browsers to create and submit their complex simulations, monitor 
their progress, and access and analyze the results generated (Fig. 9.7).

The QCG e-infrastructure has been deployed on a large number of com-
putational resources provided by various research centers, such as the Poznan 
Supercomputing and Networking Center (Poland), National Institute for 
Research in Computer Science and Control (INRIA) (France), and Dortmund 
University of Technology (Germany). A number of complex systems scientists 

Figure 9.7  Example complex system simulations executed and controlled via the Web-based 
QosCosGrid science Gateway.





DIsCUssION AND RELATED WORK    183

computational resources, offering facilities similar to large-scale parallel com-
puting production environments. One of the critical components for the execu-
tion of advanced applications in such environments is the metascheduler. Its 
main role is to schedule complex applications that end users wish to run on 
available computational resources and to guarantee “topology awareness.” 
Topology awareness implies that matching of the resource offers and requests 
must take into account not only the computational characteristics of the 
resources but also their interconnections. To the best of our knowledge, these 
kinds of requirements have not been addressed by any of the existing metas-
chedulers. Thus, the majority of the up-to-date computing e-infrastructures 
support relatively easy metascheduling strategies, in particular, easy matching-
based techniques, without advance reservation and coallocation of computa-
tional resources. Typical systems include the EGEE Workload Management 
System, eNANOS, and GridWay. The relatively simple metascheduling 
approach adopted by these systems is sufficient to execute “embarrassingly 
parallel” applications, such as parameter sweeps or MPI applications, within a 
single computing cluster. This approach limits end users to the computing 
power of one computing cluster, which may not be sufficient to perform more 
sophisticated complex system simulations. For cross-cluster MPI and ProActive 
applications, the requested and offered network topology cannot be ignored, 
meaning that topology-aware scheduling, together with coallocation capabili-
ties, must be employed. These features have been successfully implemented 
and integrated to provide a new QCG e-infrastructure for complex system 
modelers, scientists, and end users.

Emerging e-infrastructures offer new quality-of-service capabilities as well 
as new hybrid programming and execution environments such as MPI/
OpenMP and MPI/CUDA parallel hybrids. Taking advantage of the results 
presented in this chapter, the adaptation of QCG solutions to many-core 
systems would be an interesting area of our future research. Another natural 
direction of future research and development would be to explore new opti-
mization criteria, for example, energy consumption or heating, as these have 
become critical in large distributed computing environments. As virtualization 
techniques of operating systems and embedded applications are maturing, 
another fruitful avenue of future research revolves around efficient resource 
management techniques using the virtual machine concept. Moreover, the 
recent technological shift from the area of multicore to many-core systems 
and systems-on-the-chip introduced another scheduling layer at the operating 
system level. Future large-scale computing systems will have to deal with a 
hierarchy of complex static and reconfigurable computing structures, and new 
resource management techniques need to be invented to control such systems 
on a very low level of granularity.

Ethernet technology has been the dominant data link protocol in local area 
networks for many years, and it is widely offered as a customer service, but it 
was not designed for large carrier-scale transport networks. However, because 
of its suitability for data and multimedia applications, its flexibility, and its 



184    A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

widespread use, many carriers now consider Ethernet as a potential conver-
gence solution for next-generation networks. Research grid networks link 
distributed computing resources to perform highly demanding computations 
needing vast processing capability. To make optimum use of the computing 
resources, high-capacity, low-latency connections are needed, and complex 
optimization algorithms need to calculate the optimal exploitation of the 
computing resources, taking into account factors such as the data rate offered 
by the connecting links and their latency.

Currently, QCG is extensively tested by its developers and by external 
research communities interested in new computing e-infrastructures for dis-
tributed multiscale simulations across disciplines. Driven by seven challenging 
applications from five representative scientific domains (fusion, clinical deci-
sion making, systems biology, nanoscience, and engineering), they will deploy 
a computational science environment for distributed multiscale computing 
under the MAPPER4 project based on QCG technologies. Various extensions 
proposed to QCG will result in high-quality components for today’s e-infra-
structures in Europe by enabling distributed execution of two modes  
(loosely and tightly coupled) of multiscale computing in a user-friendly and 
transparent way.

REFERENCES

E. Agullo, C. Coti, J. Dongarra, et al. QR factorization of tall and skinny matrices in a 
grid computing environment. In Proc. of the 24th IEEE Int’l Parallel and Distributed 
Processing Symposium, 2010.

E. Agullo, C. Coti, T. Herault, et al. QCG-OMPI: MPI applications on grids. Future 
Generation Computer Systems, 27(4):357–369, 2011.

L. Baduel, G. Baude, D. Caromel, et al. Programming, deploying, composing, for the 
grid. In J. C. Cunha and O. F. Rana, editors, Grid Computing: Software Environments 
and Tools, pp. 205–229, London: Springer-Verlag, 2006.

S. T. Barnard. PMRSB: Parallel multilevel recursive spectral bisection. In Proc. of the 
1995 ACM/IEEE Conference on Supercomputing, Supercomputing ’95, New York: 
ACM, 1995.

C. Coti, T. Herault, S. Peyronnet, et al. Grid services for MPI. In ACM/IEEE, editor, 
Proc. of the 8th IEEE Int’l Symposium on Cluster Computing and the Grid 
(CCGrid’08), pp. 417–424, Lyon, France: IEEE Computer Society, 2008.

P.-O. Fjallstrom. Algorithms for graph partitioning: A survey. Linkoping Electronic 
Articles in Computer and Information Science, 3(10):1–34, 1998.

L. Gulyás, G. Szemes, G. Kampis, et al. A modeler-friendly API for ABM partitioning. 
In Proc. of the ASME 2009 Conference, San Diego, California, USA, 2008.

K. Kurowski, W. de Back, W. Dubitzky, et al. Complex System Simulations with 
QosCosGrid, Vol. 5544, pp. 387–396, Berlin and Heidelberg: Springer, 2009.

4 http://www.mapper-project.eu.

http://www.mapper-project.eu


REfERENCEs    185

K. Kurowski, B. Ludwiczak, J. Nabrzyski, et al. Dynamic grid scheduling with job migra-
tion and rescheduling in the GridLab resource management system. Scientific 
Programming, 12:263–273, 2004.

K. Kurowski, J. Nabrzyski, A. Oleksiak, et al. Grid scheduling simulations with GSSIM. 
In Proc. of the 13th Int’l Conference on Parallel and Distributed Systems—Vol. 2, 
pp. 1–8, Washington, DC: IEEE Computer Society, 2007.

K. Kurowski, T. Piontek, P. Kopta, et al. Parallel large-scale simulations in the pl-grid 
environment. In M. Stroinski et al., editors, Computational Methods in Science and 
Technology, pp. 47–56, Poznan, Poland, 2010.

M. Mazzariol, B. A. Gennart, and R. D. Hersch. Dynamic load balancing of parallel 
cellular automata, 2000.

OASIS Standards. OASIS web services notification technical committee, 2008. URL 
http://www.oasis-open.org.

OGF. Open grid forum, 2007. http://ogf.org.
M. Russell, P. Dziubecki, P. Grabowski, et al. The Vine Toolkit: A Java framework for 

developing grid applications. In R. Wyrzykowski et al., editors, Parallel Processing 
and Applied Mathematics, volume 4967 of Lecture Notes in Computer Science, 
pp. 331–340, Berlin and Heidelberg: Springer, 2008.

M. Scheutz and P. Schermerhorn. Adaptive algorithms for the dynamic distribution and 
parallel execution of agent-based models. Journal of Parallel Distributed Computing, 
66:1037–1051, 2006.

P. M. A. Sloot and A. G. Hoekstra. Multi-scale modelling in computational biomedicine. 
Briefings in Bioinformatics, 11(1):142–152, 2010.

P. Troger, H. Rajic, A. Haas, et al. Standardization of an API for distributed resource 
management systems. In Proc. of the 7th IEEE Int’l Symposium on Cluster Computing 
and the Grid, CCGRID’07, pp. 619–626, Washington, DC: IEEE Computer Society, 
2007.

http://www.oasis-open.org
http://ogf.org




187

Glossary

ABMS  See agent-based modeling and simulation.
Agent  The individually identifiable component of an agent-based model. An 

agent typical executes some type of behavior and represents a decision 
maker at some level.

Agent-based modeling and simulation (ABMS)  A method of simulation that 
computes the system-level consequences of the behaviors of individuals. 
ABMS is also known as individual-based simulation or individual-based 
modeling.

Ahmad–Cohen  neighbor  scheme  (ACS)  Division of gravitational force 
acting on a particle into two components, an irregular one (from nearby 
particles) and a regular one, from distant particles. Direct N-body codes of 
Aarseth of NBODY5 and higher (NBODY6, NBODY6++) employ ACS. 
Each part of the force can be used to define a separate time step, which 
determines the update interval for this force component only, while extrap-
olating the other component with low-order Taylor series polynomials, if 
needed. The idea of the ACS could be generalized to more levels, but this 
seems not to be in common use at this time.

Base  Object  Model  (BOM)  A Simulation Interoperability Standards 
Organization (SISO) standard for describing a reusable piece part of a 
simulation.

BOM  See Base Object Model.

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski, 
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



188    GLOSSARY

CCA  See Common Component Architecture.
Cloud  computing  Cloud computing describes a computing model for IT 

services based on the Internet. The fundamental concept of cloud comput-
ing is that processing and data do not reside in a specified, known, or static 
location. Typically, cloud computing infrastructures provide dynamically 
scalable, virtualized resources over the Internet. The user perspective of 
cloud computing takes the form of Web-based tools and applications that 
are accessed via a Web browser.

Cluster  See cluster computer.
Cluster computer  A collection of linked computers working closely together 

to “emulate” a single computer powerful computer. The components of a 
cluster computer are typically connected through fast local area networks. 
Clusters are usually deployed to improve performance and availability 
while being much more cost-effective than single computers of comparable 
specification.

Common Component Architecture (CCA)  A standard for component-based 
software engineering used in high-performance (also known as scientific) 
computing.

Computational  model  Refers to the computer realization (implemented 
software) of a simulation model.

Discrete-event simulation  A simulation technique where the operation of a 
system is modeled as a series of events. These events are ordered internally 
with respect to one another (i.e., earlier events occur before later ones) such 
that the simulation proceeds by removing events from a queue and execut-
ing them.

Distributed simulation system  An application consisting of distributed simu-
lation modules.

e-infrastructure  An electronic computing and communication environment 
(hardware, software, data and information repositories, services and digital 
libraries, and communication networks and protocols) and the people and 
organizational structures needed to support large-scale research and devel-
opment efforts. e-Infrastructures enable collaborations across geographi-
cally dispersed locations by providing shared access to unique or distributed 
facilities, resources, instruments, services, and communications. e-Infrastruc-
tures usually consist of (1) high-performance communication networks con-
necting the collaborating sites; (2) grid computing to facilitate the sharing 
of nontrivial amounts of resources such as processing elements, storage 
capacity, and network bandwidth; (3) supercomputing capabilities to address 
large-scale computing tasks; (4) databases and information repositories that 
are shared by the participating organizations; (5) globally operating research 
and development communities that collaborate to solve highly challenging 
scientific and engineering problems; and (6) standards to enable the sharing, 
interoperation, and communication in e-infrastructures.



GLOSSARY    189

Evolutionary algorithm  A generic population-based optimization algorithm 
based on iteration and the principles of evolution (variation, selection, and 
heredity). At each iteration, operators create diversity and a fitness function 
evaluates individuals within the population based on some characteristics. 
Individuals correspond to potential solutions and the fittest individual cor-
responds to the most optimal solution.

Federation  object  model  (FOM)  Describes the shared objects, attributes, 
and interactions for a distributed simulation system based on HLA.

FOM  See federation object model.
Gene regulatory network  A set of genes that interact with each other via the 

products they express, namely, forms of RNA and proteins. Interacting 
genes may activate or switch on the expression of another gene, or they may 
repress or switch off the expression of another gene. Gene regulatory net-
works are used by cells to control their life-support mechanisms.

GPU  See graphical processing unit.
Graphical processing unit (GPU)  A specialized microprocessor that handles 

and accelerates 3-D or 2-D graphic rendering. Owing to their highly parallel 
structure, GPUs are very effective not only in graphics computing but also 
in a wide range of other complex computing tasks.

GRAPE  See Gravity Pipe.
Gravitational potential softening  Softening of the singularity of Newtonian 

(or Coulombian) potential Φ between particles. In astrophysical N-body

simulations, a Plummer softening is often used, which is Φ Φr r( ) = +0
2 2ε  

for the potential of a single particle (r is the distance from the particle’s 
center; ε is the scaling radius for the size of the particle). It is the true 
potential of a gas sphere whose density is given by Plummer’s model, which 
is in fact an n = 5 polytrope. Note that Plummer softening differs from the 
true Newtonian potential Φ(r) = Φ0/r at all radii. More modern variants of 
softening, which are used for smoothed particle hydrodynamics, use soften-
ing kernels, which differ from the Newtonian potential only on a compact 
subspace around the particle (of the order of a few ε).

Gravity Pipe (GRAPE)  A special-purpose computer designed to accelerate 
the calculation of forces in simulations of interacting particles. GRAPE 
systems have been used for N-body calculations in astrophysics, molecular 
dynamics models, the study of magnetism, and many other applications.

Grid computing  Grid computing combines computer resources from multi-
ple administrative domains to run complex computing applications.  
Typically, grid computing environments are less tightly coupled, more het-
erogeneous, and more geographically dispersed than conventional cluster 
and supercomputers.

HAND  Highly Available Dynamic Deployment Infrastructure for Globus 
Toolkit facilitates dynamic deployment of grid services.



190    GLOSSARY

Hermite scheme  Two-point interpolation scheme that uses a function value 
and its a priori known first derivative in order to obtain fourth-order accu-
racy. In gravitational N-body simulations, the gravitational force and its time 
derivative are used to have a fourth-order time integration scheme, with 
the need to store only particle data for two points in time, which is conve-
nient for parallelization and memory management. Recently, generaliza-
tions have been described going up to eighth-order time integration, which 
requires then a priori knowledge of up to the fourth derivative of the gravi-
tational force.

High-level architecture (HLA)  An IEEE standard for distributed computer 
simulation systems. Communication between simulations is managed by a 
run-time infrastructure (RTI).

High-performance computing (HPC)  HPC uses supercomputers, computer 
clusters, or other large-scale or distributed computing technology to solve 
large-scale computing problems. Nowadays, any computer system that is 
capable of a teraflop computing performance is considered an HPC 
computer.

HLA  See high-level architecture.

HPC  See high-performance computing.

Job  Usually, a grid job is a binary executable or command to be run in a 
remote resource (machine). The remote server is sometimes referred to as 
a “contact” or a “gatekeeper.” When a job is submitted to a remote gate-
keeper (server) for execution, it can run in two different modes: batch and 
nonbatch. Usually, when a job runs in batch mode, the remote submission 
call will return immediately with a job identifier, which can later be used to 
obtain the output of the call. In the nonbatch job submission mode, the 
client will wait for the remote gatekeeper to follow through with the execu-
tion and will return the output. Batch mode submission is useful for jobs 
that take a long time, such as process-intensive computations.

Master–worker  pattern  The master–worker pattern is used in distributed 
computing to address easy-to-parallelize large-scale computing tasks. This 
pattern typically consist of two types of entities: master and worker. The 
master initiates and controls the computing process by creating a work set 
of tasks and putting them in some “shared space” and then waits for the 
tasks to be pulled from the space and completed by the workers. One of 
the advantages of the master–worker pattern is that it automatically bal-
ances the load because the work set is shared and the workers continue to 
pull work from the set until there is no more work to be done. Algorithms 
implementing the master–worker pattern usually scale well, provided that 
the number of tasks is much higher than the number of workers and that 
the tasks are similar in terms of the amount of time they need to be 
completed.

MCT  See Model Coupling Toolkit.



GLOSSARY    191

Message Passing Interface (MPI)  A message passing parallel programming 
model in which data are moved from the address space of one process to 
that of another process through cooperative operations on each process. 
The MPI standard includes a language-independent message passing library 
interface specification.

Model Coupling Toolkit (MCT)  A set of tools for coupling message passing 
parallel models.

Model reduction  Refers to the approximation of a model aiming at a simpli-
fied model that is easier to analyze but preserves the essential properties 
of the original model.

MPI  See Message Passing Interface.
Multiscale  Coupling  Library  and  Environment  (MUSCLE)  A software 

framework for building simulations according to the complex automata 
theory.

Multiscale  Multiphysics  Scientific  Environment  (MUSE)  A software envi-
ronment for astrophysical applications in which different simulation models 
of star systems are incorporated into a single framework.

MUSCLE  See Multiscale Coupling Library and Environment.
MUSE  See Multiscale Multiphysics Scientific Environment.
Object-oriented  programming  (OOP)  A programming paradigm in which 

data and the operations on that data are encapsulated in an object. Other 
features of OOP include inheritance, where one object may inherit the data 
and operations of parent object(s), and polymorphism, where an object can 
be used in place of its parent object while retaining its own behavior.

Ordinary  differential  equation  In chemical kinetic theory, the interactions 
between species are commonly expressed using ordinary differential equa-
tions (ODEs). An ODE is a relation that contains functions of only one 
independent variable (typically t) and one or more of its derivatives with 
respect to that variable. The order of an ODE is determined by the highest 
derivative it contains (e.g., a first-order ODE involves only the first deriva-
tive of the function). The equation 5 17x t x t( ) + ( ) =�  is an example of a first-
order ODE involving the independent variable t, a function of this variable, 
x(t), and a derivative of this function, �x t( ). Since a derivative specifies a rate 
of change, such an equation states how a function changes but does not 
specify the function itself. Given sufficient initial conditions, various methods 
are available to determine the unknown function. The difference between 
ordinary differential equations and partial differential equations is that 
partial differential equations involve partial derivatives of several 
variables.

Parallel  discrete-event  simulation  A distributed version of discrete-event 
simulation in which the events and their execution may occur in parallel 
across machines or processes. This usually includes some mechanism(s) for 
synchronizing the execution of events across machines or processes.



192    GLOSSARY

Parameter  sweep  A technique to explore or characterize a process, proce-
dure, or function by means of a carefully generated set of input parameter 
combinations or configurations. The term parameter may cover a wide range 
of concepts, including structured data files, numeric or symbolic values, 
vectors or matrices, or executable models or programs. For example, a 
parameter sweep experiment may generate suitable inputs to explore a cost 
function or to create the energy surface for a 3-D graph. Sensitivity analysis 
could be viewed as a form of parameter sweep experiment where inputs 
are systematically varied to analyze how sensitive a model responds to 
variations of individual or groups of state variables. In contrast to parameter 
estimation and parameter optimization techniques, the parameter sweep 
procedure does not normally incorporate feedback from the output of a 
process or model to iteratively steer and adapt the generation of parameter 
combinations.

Partial  differential  equation  Similar to an ordinary differential equation 
except that it involves functions with more than one independent 
variable.

Regularization  Classical method of celestial mechanics to transform equa-
tions of motions for the two-body problem to a harmonic oscillator problem, 
removing the coordinate singularity at zero separation and allowing ana-
lytic continuation of solutions through the zero separation point. 
Regularization is commonly used for some direct N-body simulation codes 
to allow a more efficient integration of perturbed dominant pairs of parti-
cles at nonzero separation.

RTI  See run-time infrastructure.

Run-time Infrastructure (RTI)  A communication bus used by HLA simula-
tion modules.

SAN  See storage area network.

SCA  See Service Component Architecture.

Sensitivity analysis  An important tool to study the dependence of systems 
on their parameters. Sensitivity analysis helps to identify those parameters 
that have a significant impact on the system output and to capture the 
essential characteristics of the system. Sensitivity analysis is particularly 
useful for complex biological networks with a large number of variables 
and parameters.

Service  A network-enabled entity that provides a specific capability, for 
example, the ability to move files, create processes, or verify access rights. 
A service is defined in terms of the protocol one uses to interact with it and 
the behavior expected in response to various protocol message exchanges 
(i.e., service = protocol + behavior.). A service may or may not be persistent 
(i.e., always be available); be able to detect and/or recover from certain 
errors; run with privileges; or have a distributed implementation for 
enhanced scalability. If variants are possible, then discovery mechanisms 



GLOSSARY    193

that allow a client to determine the properties of a particular instantiation 
of a service are important.

Service Component Architecture (SCA)  A set of specifications that describe 
a model for building applications and systems using a service-oriented 
architecture.

Service-oriented architecture (SOA)  An SOA is a collection of services that 
communicate with each other by simple data passing or to coordinate the 
activity of multiple services. Some means of connecting services to each 
other is needed. The main advantages of SOA include loose coupling, ease 
and flexibility of reuse, scalability, interoperability, and service abstraction 
from underlying technology.

Simulation  Interoperability  Standards  Organization  (SISO)  An interna-
tional organization dedicated to the promotion of modeling and simulation 
interoperability and reuse for the benefit of a broad range of modeling and 
simulation communities

Simulation  model  A formal (mathematical) description of a natural phe-
nomenon or an engineering artifact used to simulate the behavior of the 
phenomenon or artifact. To facilitate efficient simulation that a simulation 
model is typically implemented as a computer program or software (referred 
to as computational model).

SISO  See Simulation Interoperability Standards Organization.
SOA  See service-oriented architecture.
Storage  area  network  (SAN)  A storage area network is a special type of 

network that is separate from LANs and WANs. A SAN is usually dedicated 
to connect all the storage resources connected to various servers.

Supercomputer  A supercomputer is a computer that is at the front of current 
processing capacity. Supercomputers are typically used for highly calcula-
tion-intensive tasks such as problems involving quantum physics, weather 
forecasting, climate research, molecular modeling, physical simulations, and 
so on. In the context of supercomputing, the distinction between capability 
computing and capacity computing is becoming relevant. Capability is nor-
mally concerned with maximum computing power to solve a large problem 
in the shortest amount of time. Capacity computing, on the other hand, is 
concerned with efficient, cost-effective computing power to solve somewhat 
large problems or many small problems or to prepare for a run on a capa-
bility system.

Virtualization  In computing, virtualization refers to the creation of a virtual 
(rather than actual) version of something such as an operating system (OS), 
a server, a storage device, or network resources. The usual goal of virtualiza-
tion is to centralize administrative tasks while improving scalability and 
workloads. Virtualization is part of a trend in which computer processing 
power is seen as a utility that clients can pay for only as needed. Some 
common virtualizations include the following: Hardware virtualization 



194    GLOSSARY

refers to the execution of software in an environment separated from the 
underlying hardware resources. Memory virtualization refers to the aggre-
gation RAM resources from networked systems into a single memory pool. 
Storage virtualization refers to the separation of logical storage from physi-
cal storage. Data virtualization refers to the presentation of data as an 
abstract layer, independent of underlying database systems, structures, and 
storage. Database virtualization refers to the decoupling of the database 
layer, which lies between the storage and application layers within the 
application stack. Network virtualization refers to the creation of a virtual-
ized network addressing space within or across network subnets. Software 
virtualization: (1) OS-level virtualization refers to the hosting of multiple 
virtualized environments within a single OS instance; (2) application virtu-
alization refers to the hosting of individual applications in an environment 
separated from the underlying OS; and (3) virtual machine refers to a soft-
ware implementation of a computer that executes programs like a real 
computer.

Virtual  machine  A software implementation of a computer that executes 
programs like a physical machine. Software running inside a virtual machine 
is limited to the resources and abstractions provided by the virtual 
machine—it cannot cross the boundaries of the “virtual world” established 
by the virtual machine. Virtual machines are categorized into two major 
types: (1) a system virtual machine, which provides a complete system plat-
form that supports the execution of a complete operating system, and (2) 
a process virtual machine, which is designed to run a single program, which 
means that it supports a single process.

Virtual organization (VO)  Refers to a set of individuals and/or institutions 
that are related to one another by some level of trust and rules of sharing 
resources, services, and applications.

VO  See virtual organization.
Web service (WS)  Refers to a Web-based application that uses open, XML-

based standards and transport protocols to exchange data with clients. A 
WS is designed to support interoperable machine-to-machine interaction 
over a network.

Web Service Resource Framework (WSRF)  A Web service extension pro-
viding a set of operations that Web services may implement to become 
stateful.

WS  See web service.
WSRF  See Web Service Resource Framework.



195

Index

ADMIRE  132, 135, 136, 137

BalticCloud  31
BalticGrid  28, 31

Cloud  30, 163, 175
simulation  15

Cloud computing  2
Communication

cross-cluster  172
inter-process  164

complex systems  111, 164
computer cluster  172

Data center
simulation  15

Data management  74
DEISA  119
Differential equation, linear  145

EGEE  26, 28, 119
E-infrastructure  20, 21, 26, 28, 29, 30, 31, 

32, 111, 119, 128, 164, 165, 176, 
177, 178, 181, 182, 183, 184

Execution, concurrent  114

FLAME  83

Graphical processing unit  36, 37, 40, 41, 
42, 44, 45, 49, 52, 88, 112

Grid  29, 30, 163, 170, 171, 175, 184
scheduling  178
simulation  15

Grid computing  2
GridFTP  177
GridSpace  128

High Level Architecture  83, 111, 120, 
127, 128

Infiniband  52

Mass action kinetics  145
Metacomputer  112
Model

ecological  101
gene regulation  142

Modeling  91, 92
agent-based  60, 61, 87, 92, 107, 165
biological  142
cloud  13, 81
complex systems  178
computational  60
gene regulation  171
grid  13, 14

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski, 
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



196    INDEX

Modeling (cont’d)
mathematical  145
microbial biodiversity  83
multi-scale  111
Repast HPC  90
rumor spreading  101

Molecular dynamics  24
MPI  85, 92, 116, 170

OGSA  10, 176
OGSA-DAI  134, 137, 138
OpenMP  86
OpenMPI  172

Parameter space  60
Parameter sweep  169
Python  116

QosCosGrid  164, 174
QosCosGrid ProActive  172

Repast HPC  81, 83, 84, 85, 87, 90, 92, 96, 
107, 165

implementation  94
Resource management  178

Scalability  90
Scheduling  91
Simulation  1

agent-based  71, 77, 81, 82, 86, 94, 100, 
165

artificial life  61
cloud  13, 15
complex systems  167
composability  113, 116, 128
distributed  63, 66, 76, 86, 128, 166
execution  169
galaxy collision  112
gene regulation  142, 171

grid  13
High Level Architecture  116
in-stent restenosis  117
interaction  113
interoperability  115
large-scale  19, 60, 62, 65, 83, 169, 178
molecular-mechanics  24
multi-scale  111, 112, 114, 115, 116, 128, 

184
parallel  61, 69, 75, 86, 93, 164, 166, 169
parallel discrete event  86
reusability  113
scheduling  4, 14, 97
stellar  124
stellar system  112
supernova  22
synchronization  93
tool(s)

EURACE  84
FLAME  83
GridSim  14
MUSCLE  117
MUSE  113, 116, 124
PDES-MAS  85
Repast HPC  100, 165
ROSS  87
SimWorld  60

traffic  91
Simulation Specification Markup 

Language  68
Stream X-Machine  83
Supercomputer  1, 32, 38, 40, 41, 47, 52, 

54, 72, 125, 133, 161, 164, 178

Unicore  178

Virtualization  2
Virtual organization, simulation  15
Visualization  74



WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING
Series Editor: Albert Y. Zomaya

Parallel and Distributed Simulation Systems / Richard Fujimoto

Mobile Processing in Distributed and Open Environments / Peter Sapaty

Introduction to Parallel Algorithms / C. Xavier and S. S. lyengar

Solutions to Parallel and Distributed Computing Problems: Lessons from 
Biological Sciences / Albert Y. Zomaya, Fikret Ercal, and Stephan Olariu 
(Editors)

Parallel and Distributed Computing: A Survey of Models, Paradigms, and 
Approaches / Claudia Leopold

Fundamentals of Distributed Object Systems: A CORBA Perspective / 
Zahir Tari and Omran Bukhres

Pipelined Processor Farms: Structured Design for Embedded Parallel 
Systems / Martin Fleury and Andrew Downton

Handbook of Wireless Networks and Mobile Computing / Ivan Stojmenović 
(Editor)

Internet-Based Workflow Management: Toward a Semantic Web / Dan C. 
Marinescu

Parallel Computing on Heterogeneous Networks / Alexey L. Lastovetsky

Performance Evaluation and Characteization of Parallel and Distributed 
Computing Tools / Salim Hariri and Manish Parashar

Distributed Computing: Fundamentals, Simulations and Advanced Topics, 
Second Edition / Hagit Attiya and Jennifer Welch

Smart Environments: Technology, Protocols, and Applications / Diane Cook 
and Sajal Das

Fundamentals of Computer Organization and Architecture / Mostafa 
Abd-El-Barr and Hesham El-Rewini

Advanced Computer Architecture and Parallel Processing / Hesham 
El-Rewini and Mostafa Abd-El-Barr

UPC: Distributed Shared Memory Programming / Tarek El-Ghazawi, 
William Carlson, Thomas Sterling, and Katherine Yelick

Handbook of Sensor Networks: Algorithms and Architectures / Ivan 
Stojmenović (Editor)



Parallel Metaheuristics: A New Class of Algorithms / Enrique Alba (Editor)

Design and Analysis of Distributed Algorithms / Nicola Santoro

Task Scheduling for Parallel Systems / Oliver Sinnen

Computing for Numerical Methods Using Visual C++ / Shaharuddin Salleh, 
Albert Y. Zomaya, and Sakhinah A. Bakar

Architecture-Independent Programming for Wireless Sensor Networks / 
Amol B. Bakshi and Viktor K. Prasanna

High-Performance Parallel Database Processing and Grid Databases / 
David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel

Algorithms and Protocols for Wireless and Mobile Ad Hoc Networks / 
Azzedine Boukerche (Editor)

Algorithms and Protocols for Wireless Sensor Networks / Azzedine 
Boukerche (Editor)

Optimization Techniques for Solving Complex Problems / Enrique Alba, 
Christian Blum, Pedro Isasi, Coromoto León, and Juan Antonio Gómez 
(Editors)

Emerging Wireless LANs, Wireless PANs, and Wireless MANs: IEEE 
802.11, IEEE 802.15, IEEE 802.16 Wireless Standard Family / Yang Xiao 
and Yi Pan (Editors)

High-Performance Heterogeneous Computing / Alexey L. Lastovetsky and 
Jack Dongarra

Mobile Intelligence / Laurence T. Yang, Augustinus Borgy Waluyo, Jianhua 
Ma, Ling Tan, and Bala Srinivasan (Editors)

Advanced Computational Infrastructures for Parallel and Distributed 
Adaptive Applicatons / Manish Parashar and Xiaolin Li (Editors)

Market-Oriented Grid and Utility Computing / Rajkumar Buyya and Kris 
Bubendorfer (Editors)

Cloud Computing Principles and Paradigms / Rajkumar Buyya, James 
Broberg, and Andrzej Goscinski


	Large-Scale Computing
	Contents
	Foreword
	Preface
	Contributors
	Chapter 1: State-of-the-Art Technologies for Large-Scale Computing
	1.1 INTRODUCTION
	1.2 GRID COMPUTING
	1.3 VIRTUALIZATION
	1.4 CLOUD COMPUTING
	1.4.1 Drawbacks of Cloud Computing
	1.4.2 Cloud Interfaces

	1.5 GRID AND CLOUD: TWO COMPLEMENTARY TECHNOLOGIES
	1.6 MODELING AND SIMULATION OF GRID AND CLOUD COMPUTING
	1.6.1 GridSim and CloudSim Toolkits

	1.7 SUMMARY AND OUTLOOK
	REFERENCES

	Chapter 2: The e-Infrastructure Ecosystem: Providing Local Support to Global Science
	2.1 THE WORLDWIDE E-INFRASTRUCTURE LANDSCAPE
	2.2 BALTICGRID: A REGIONAL E-INFRASTRUCTURE, LEVERAGING ON THE GLOBAL “MOTHERSHIP” EGEE
	2.2.1 The BalticGrid Infrastructure
	2.2.2 BalticGrid Applications: Providing Local Support to Global Science
	2.2.3 The Pilot Applications
	2.2.4 BalticGrid’s Support Model

	2.3 THE EGEE INFRASTRUCTURE
	2.3.1 The EGEE Production Service
	2.3.2 EGEE and BalticGrid: e-Infrastructures in Symbiosis

	2.4 INDUSTRY AND E-INFRASTRUCTURES: THE BALTIC EXAMPLE
	2.4.1 Industry and Grids
	2.4.2 Industry and Clouds, Clouds and e-Infrastructures
	2.4.3 Clouds: A New Way to Attract SMEs and Start-Ups

	2.5 THE FUTURE OF EUROPEAN E-INFRASTRUCTURES: THE EUROPEAN GRID INITIATIVE (EGI) AND THE PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE (PRACE) INFRASTRUCTURES
	2.5.1 Layers of the Ecosystem

	2.6 SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

	 Chapter 3: Accelerated Many-Core GPU Computing for Physics and Astrophysics on Three Continents
	3.1 INTRODUCTION
	3.2 ASTROPHYSICAL APPLICATION FOR STAR CLUSTERS AND GALACTIC NUCLEI
	3.3 HARDWARE
	3.4 SOFTWARE
	3.5 RESULTS OF BENCHMARKS
	3.6 ADAPTIVE MESH REFINEMENT HYDROSIMULATIONS
	3.7 PHYSICAL MULTISCALE DISCRETE SIMULATION AT IPE
	3.8 DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	Chapter 4: An Overview of the SimWorld Agent-Based Grid Experimentation System
	4.1 INTRODUCTION
	4.2 SYSTEM ARCHITECTURE
	4.3 SYSTEM IMPLEMENTATION
	4.3.1 Key Components
	4.3.2 Novel Features in SWAGES

	4.4 A SWAGES CASE STUDY
	4.4.1 Research Questions and Simulation Model
	4.4.2 The Simulation Environment
	4.4.3 Simulation Runs in SWAGES
	4.4.4 Data Management and Visualization

	4.5 DISCUSSION
	4.5.1 Automatic Parallelization of Agent-Based Models
	4.5.2 Integrated Data Management
	4.5.3 Automatic Error Detection and Recovery
	4.5.4 SWAGES Compared to Other Frameworks

	4.6 CONCLUSIONS
	REFERENCES

	Chapter 5: Repast HPC: A Platform for Large-Scale Agent-Based Modeling
	5.1 INTRODUCTION
	5.2 AGENT SIMULATION
	5.3 MOTIVATION AND RELATED WORK
	5.4 FROM REPAST S TO REPAST HPC
	5.4.1 Agents as Objects
	5.4.2 Scheduling
	5.4.3 Modeling

	5.5 PARALLELISM
	5.6 IMPLEMENTATION
	5.6.1 Context
	5.6.2 RepastProcess
	5.6.3 Scheduler
	5.6.4 Distributed Network
	5.6.5 Distributed Grid
	5.6.6 Data Collection and Logging
	5.6.7 Random Number Generation and Properties

	5.7 EXAMPLE APPLICATION: RUMOR SPREADING
	5.7.1 Performance Results

	5.8 SUMMARY AND FUTURE WORK
	REFERENCES

	Chapter 6: Building and Running Collaborative Distributed Multiscale Applications
	6.1 INTRODUCTION
	6.2 REQUIREMENTS OF MULTISCALE SIMULATIONS
	6.2.1 Interactions between Single-Scale Models
	6.2.2 Interoperability, Composability, and Reuse of Simulation Models

	6.3 AVAILABLE TECHNOLOGIES
	6.3.1 Tools for Multiscale Simulation Development
	6.3.2 Support for Composability
	6.3.3 Support for Simulation Sharing

	6.4 AN ENVIRONMENT SUPPORTING THE HLA COMPONENT MODEL
	6.4.1 Architecture of the CompoHLA Environment
	6.4.2 Interactions within the CompoHLA Environment
	6.4.3 HLA Components
	6.4.4 CompoHLA Component Users

	6.5 CASE STUDY WITH THE MUSE APPLICATION
	6.6 SUMMARY AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

	Chapter 7: Large-Scale Data-Intensive Computing
	7.1 DIGITAL DATA: CHALLENGE AND OPPORTUNITY
	7.1.1 The Challenge
	7.1.2 The Opportunity

	7.2 DATA-INTENSIVE COMPUTERS
	7.3 ADVANCED SOFTWARE TOOLS AND TECHNIQUES
	7.3.1 Data Mining and Data Integration
	7.3.2 Making Data Mining Easier
	7.3.3 The ADMIRE Workbench

	7.4 CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	Chapter 8: A Topology-Aware Evolutionary Algorithm for Reverse-Engineering Gene Regulatory Networks
	8.1 INTRODUCTION
	8.2 METHODOLOGY
	8.2.1 Modeling GRNs
	8.2.2 QCG-OMPI
	8.2.3 A Topology-Aware Evolutionary Algorithm

	8.3 RESULTS AND DISCUSSION
	8.3.1 Scaling and Speedup of the Topology-Aware Evolutionary Algorithm
	8.3.2 Reverse-Engineering Results

	8.4 CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	Chapter 9: QosCosGrid e-Science Infrastructure for Large-Scale Complex System Simulations
	9.1 INTRODUCTION
	9.2 DISTRIBUTED AND PARALLEL SIMULATIONS
	9.3 PROGRAMMING AND EXECUTION ENVIRONMENTS
	9.3.1 QCG-OMPI
	9.3.2 QCG-ProActive

	9.4 QCG MIDDLEWARE
	9.4.1 QCG-Computing Service
	9.4.2 QCG-Notification and Data Movement Services
	9.4.3 QCG-Broker Service

	9.5 ADDITIONAL QCG TOOLS
	9.5.1 Eclipse Parallel Tools Platform (PTP) for QCG

	9.6 QOSCOSGRID SCIENCE GATEWAYS
	9.7 DISCUSSION AND RELATED WORK
	REFERENCES

	Glossary
	Index




